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Abstract

This thesis consists of three essays. The first essay is on quality disclosure

for experience goods with customer bounded rationality. Deciding whether

to disclose quality information is of strategic importance for firms. For ex-

perience goods, in practice, customers may not take a firm’s nondisclosure

strategy as a “signal” to infer low quality. Under a nondisclosure strategy,

customers tend to rely on the experiences of those who previously bought

the product or experienced the service, and then deduce quality information

based on a limited number of these samples (dubbed as “customer bounded

rationality”). It remains unclear how customer bounded rationality affects

a firm’s quality disclosure decision. We build a behavioral model to study

firm incentives to disclose quality information of experience goods under cus-

tomer bounded rationality in the sense of anecdotal reasoning. We find that

a firm with a high or low quality level prefers not to disclose information

on this quality, whereas a firm with a medium quality level prefers to do

so. Our findings are consistent with some recent empirical evidences and

provide a new explanation for the incomplete voluntary disclosure observed

in many markets, particularly those for experience goods. Ignoring customer

bounded rationality can lead to a significant profit loss. When there is con-

gestion in the service context, the demand rate also plays a critical role. We

i



also provide the managerial implications of our findings.

The second essay establishes performance bounds on the minimum cost

of a classic one-warehouse multi-retailer distribution system, in which any in-

ventory replenishment at each location incurs a fixed-plus-variable cost and

takes a constant lead time. The optimal policy is unknown and even if it

exists, must be extremely complicated. The goal of this essay is to iden-

tify an easy-to-compute heuristic policy within the class of modified echelon

(r,Q) policies that does not require an integer-ratio property or a synchro-

nized, nested ordering property, yet has certain performance bounds. We

first develop a cost upper bound for any given modified echelon (r,Q) pol-

icy. Computation of the bound does not require an exact evaluation of the

system-wide cost, which is notoriously difficult. We next adopt parameters

of the heuristic by minimizing the cost upper bound, which is equivalent to

solving a set of independent single-stage (r,Q) systems. With a cost lower

bound that has been established in the literature, we then develop easy-to-

compute performance bounds for the heuristic policy. Finally, using those

bounds, we show that the proposed modified echelon (r,Q) heuristic policy

is asymptotically optimal as a pair of system parameters is scaled up, e.g.,

when the ratios of the fixed cost of the warehouse over those of the retailers

become large. Numerical study demonstrates that our proposed heuristic

performs well and tends to outperform the echelon-stock (r, nQ) heuristic

policy studied in the literature.

The third essay is on inventory control for a single-item periodic-review

stochastic inventory system with both minimum order quantity (MOQ) and

batch ordering requirements. In each time period, the firm can order either

none or at least as much as the MOQ. At the same time, if an order is

placed, the order quantity is required to be an integral multiple of a given

specific batch size. We first adopt a heuristic policy which is specified by
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two parameters (s, k). Applying a discrete time Markov chain approach, we

compute the system cost and optimize this (s, k) policy under the long-run

average cost criterion. We also consider a simpler one-parameter policy, the

so-called S policy, which is a special case of the (s, k) policy. In an intensive

numerical study, we find that 1) both policies perform well in comparison

with other policies; and 2) the S policy also performs well and is compatible

with the (s, k) policy; only in a few cases where demand variation is small,

the latter outperforms the former significantly. We also evaluate the effects

of some important parameters on system performance.
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Chapter 1

Introduction

Operations management is a field of management that is chiefly concerned

with (i) designing and controlling the process of production and (ii) redesign-

ing business operations in the production of goods or services. Both elements

of operations management concern a variety of strategic issues, e.g., facility

location, inventory control, pricing, process flexibility, and contract design.

The goal of operations management is to help managers to make better de-

cisions to minimize costs and/or to maximize profits. This thesis addresses

two specific topics: information disclosure and inventory control. The first

topic is concerned with maximizing profits, and falls within the category of

redesigning business operations. The second is concerned with minimizing

an inventory system’s total cost, and falls within the category of control-

ling the process of production. Two separate problems are studied, one for

single-echelon inventory systems and the other for multi-echelon systems.

The information disclosure problem is a key component of a business

operations strategy. Mandatory disclosure is sometimes required by the gov-

ernment, e.g., it is mandatory for a public listed company to disclose key

information in its annual financial reporting. More often, however, a com-

pany has wide discretion in deciding whether to disclose information and it

is well known that voluntary disclosure is not always appropriate in practice.

Decisions about information disclosure have a considerable impact on firm
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operations, and thus are of great importance.

Inventory control involves stocks of raw materials, work-in-progress, and

finished goods. Various approaches and models can be used in developing in-

ventory management systems and practices. Inventory control problems exist

in all supply chains, and their strategic importance is fully recognized by top

management. As Axsäter [6, page. 2] states: “For those who are working with

logistics and supply chains, it is difficult to think of any qualification that is

more essential than a thorough understanding of basic inventory models.”

1.1 Motivation and Research Problems

The first research problem concerns quality information disclosure in the

context of experience goods. Quality is an important factor that greatly

influences both customer willingness to pay and firm profits. Firms usu-

ally possess more quality information better than their potential customers

owing to variety of market research instruments. Potential customers, in

contrast, lack the resources and expertise to access reliable information on

quality. To alleviate the market inefficiency caused by this kind of informa-

tion asymmetry, service providers can choose to voluntarily supply verifiable

quality information to customers. Grossman [40] and Milgrom [67] demon-

strate the classical unraveling result: high-quality firms should reveal their

quality information because customers will rationally assume low quality if

no quality information is disclosed, thus motivating all firms to reveal quality

information if there is no direct cost to do so.

However, the unraveling result hinges on a critical assumption, namely,

that customers hold a rational expectation about the quality of nondisclosed

products. In other words, rational customers will always assume low quality if

a firm does not disclose quality information. In practice, however, customers
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may not be rational enough to realize that a firm’s disclosure decision is

closely related to its quality information, or is even a direct “signal” of its

quality. The salient feature of this work is that it investigates the firm qual-

ity disclosure strategy for experience goods by relaxing the aforementioned

rational expectation assumption. Faced with unverifiable or no quality infor-

mation on experience goods, customers will tend to rely on anecdotes from

others who have bought or experienced those goods. Then, a natural research

question is how customer bounded rationality affects a firm’s incentives to

disclose quality information.

The second research problem concerns the classical multi-echelon stochas-

tic distribution inventory system, comprising one warehouse and multiple

retailers. The retailers replenish their stocks from the warehouse, which in

turn replenishes its stock from an external supplier with an unlimited supply.

This kind of problem is well studied, but the optimal policy is still unknown.

Various heuristic polices have been developed for multi-echelon inventory

systems, and extensive numerical experiments have been conducted to show

that those policies perform well numerically. Although most of the heuristic

policies proposed in the literature make intuitive sense, it is still unclear how

large the gap is between a heuristic solution and an optimal one. Therefore,

the second problem addresses this issue and fills the gap in the literature

on distribution systems by developing a heuristic policy with a performance

guarantee.

The third research problem concerns a single-item periodic-review stochas-

tic inventory system with both minimum order quantity (MOQ) and batch

ordering requirements. MOQ and batch ordering, applied independently or

simultaneously, are two common requirements made by suppliers. Both can

help companies take advantage of economies of scale and hence reduce costs.

The MOQ requirement means that the order quantity must equal or exceed
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a specified level if an order is placed. The batch ordering requirement means

that the order quantity must be an integral multiple of a specified given batch

size.

The coexistence of an MOQ and batch ordering has a two-sided effect.

On one hand, requiring a MOQ and batch ordering simultaneously helps

suppliers reduce the risk of uncertainty and achieve economies of scale. On

the other hand, the two requirements may have a negative effect on buyers’

inventory control, especially when MOQs are relatively large compared with

their demand, which is not unusual in practice. In such situations, managers

need principles or tools to help them control inventory. However, to the best

of my knowledge, no research has investigated inventory systems with both

MOQ and batch ordering requirements. Therefore, an inventory system with

both MOQ and batch ordering requirements are studied in the third problem

and several effective heuristic policies are developed.

1.2 Organization of Thesis

The remainder of the thesis is organized as follows. The essay on informa-

tion disclosure for experience goods with customer bounded rationality is

presented in Chapter 2, which comprises an introduction, literature review,

model description, analysis, and conclusion. The distribution inventory sys-

tem problem is studied in Chapter 3, and the single-stage inventory system

problem with MOQ and batch ordering is studied in Chapter 4.
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Chapter 2

Information Disclosure with

Customer Bounded Rationality

2.1 Introduction

Quality is an important factor that largely determines customer willingness

to pay and firm profits. However, for experience goods, it is difficult for cus-

tomers to know the quality without actually consuming them (Nelson [68]).

Typically, firms (e.g., retailers or service providers) know their quality better

than potential customers do. Firms have a variety of market research instru-

ments (e.g., customer feedback, market surveys, expert evaluations, market

data, medical data in the healthcare sector) from which to obtain accurate

service quality information. However, potential customers lack the resources

and expertise to access such information. To alleviate this issue, service

providers can voluntarily supply verifiable quality information to customers

via a variety of channels. For example, they can supply such quality infor-

mation by advertising their products/services in newspapers or on television.

Milgrom [67] and Grossman [40] draw the following classical unraveling

result: firms should disclose their private quality information if its disclosure

and verification are costless. The rationale is as follows. If the disclosure

cost is negligible, then customers will rationally assume nondisclosing firms
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to have the lowest quality, which motivates firms to reveal private quality

information. However, in practice there are many markets in which voluntary

disclosure is incomplete, especially for experience goods (Spranca et al. [87],

Mathios [65], Jin [57], Xiao [93], and Bederson et al. [9]).

As pointed out by Dranove and Jin [26], one of the strong assumptions

made in the unraveling result is that customers hold a rational expectation

on the nondisclosed quality of products. In practice, however, customers

may not be rational enough to realize that a firm’s disclosure decision is

closely related to its quality information, or is even a direct “signal” of quality.

For example, Brown et al. [13] find that some moviegoers do not infer low

quality from a cold opening, though rational moviegoers should infer that

cold-opened movies are below average in quality.

Customers may not hold rational expectations due to a variety of reasons.

Some customers may lack the technical expertise necessary to interpret the

disclosed quality information. This lack of expertise may be due to consumers

having neither the time nor the education to become knowledgeable enough

to understand the information. For example, in the healthcare context, not

all customers understand the quality data prepared to assist them in choos-

ing healthcare providers. In particular, for experience goods, even when a

firm discloses quality information, customers may unintentionally ignore it

because of the complex disclosure format, which can be treated as “nondis-

closure”. For example, the terms and conditions for credit cards are usually

10 pages in length or even longer. Dranove and Jin [26] state that customers

may not pay attention to disclosed information, if they do not understand it

or make naive inferences about nondisclosure (see the examples in Fishman

and Hagerty [35], Hirshleifer and Teoh [45], Stivers [88], and Schwartz [77]).

Moreover, some customers may also think the quality disclosure is manda-

tory or costless, or even do not believe the information disclosed by the firm
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itself. In theses examples, customers fail to directly link the disclosure de-

cision with the firm’s quality information. Hence, customers may not have

rational expectation on the nondisclosed quality of products.

Faced with unverifiable or no quality information on experience goods,

customers tend to rely on anecdotes from those who have bought the prod-

uct or have experienced the service previously (Dranove and Jin [26] and Yu

et al. [95]). Such anecdotes are easy to obtain via several channels. Cus-

tomers can collect anecdotal evidences from their friends via word-of-mouth

or user-generated content from online channels with information provided

by other customers. Customers can also share their usage experiences by

posting reviews on independent third-party websites (e.g., epinions.com, con-

sumerreview.com, tripadvisor.com, yelp.com) or social media (e.g., Facebook,

Twitter). Empirical studies show that customers’ quality perceptions can in-

deed be affected by other customers’ comments and online ratings (see Chen

et al. [21] and Lee et al. [61] for related empirical studies). For example, in

the healthcare context, people often rely on informal, qualitative information

from friends, relatives, and acquaintances in choosing healthcare providers or

health plans (Lupton et al. [64], Peters et al. [72], and Huppertz and Carlson

[56]).

The salient feature of our paper is to investigate the firm quality disclo-

sure strategy for experience goods by relaxing the rational expectation as-

sumption about nondisclosure for customers. We consider the firm’s quality

disclosure decision, e.g., whether to disclose verifiable quality information on

infrequently purchased experience goods with boundedly rational customers.

Such experience goods include electronic gadgets, cars, books, movies, plays,

healthcare and financial services whose quality cannot be easily captured

without consumption. In the absence of verifiable quality information, other

consumers’ experiences constitute a key input for those who have not yet
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experienced the product or service (Hu et al. [49]). Then a natural research

question for both academics and practitioners is: What is the impact of

customer bounded rationality on a firm’s quality disclosure strategy?

To model customer bounded rationality under a nondisclosure strategy,

we adopt the anecdotal reasoning framework to describe customers’ decision-

making behavior. Under the anecdotal reasoning framework, customers make

decisions based on the sample mean of observed anecdotes or collected sam-

ples (Osborne and Rubinstein [70]). Essentially, we assume that because of

limitations in customers’ ability to gather and process information (Simon

[84]). They behave naively, acting as if the mean quality of a small number

of samples is perfectly representative of true quality. Anticipating such cus-

tomer behavior, the firm makes its price and quality disclosure decisions to

maximize profits by considering homogeneous customers. If the firm with-

holds quality information, then potential customers can only infer its quality

and make purchase decisions based on other customers’ experiences. Other-

wise, if the firm discloses quality information (which may involve a quality

disclosure cost), then that information becomes public information.

Surprisingly, we find that the optimal disclosure strategy has the following

structure: When the firm’s quality level is either high or low, it is optimal not

to disclose quality information. When it has a medium quality level, however,

it may be optimal to disclose quality information. The main managerial in-

sight is that customer bounded rationality is important for firms considering

quality disclosure. In particular, the presence of customer bounded rational-

ity negates a high-quality firm’s incentive to disclose quality information, but

not necessarily that of its medium-quality counterpart. We also show that

ignoring customer bounded rationality can lead to a significant profit loss,

particularly when the quality disclosure cost is high.

The managerial implications of our results for experience goods are as
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follows. (1) In contrast to the classic unraveling result, in the presence of

customer bounded rationality, high-quality firms do not need to disclose their

quality. Social learning or “reputation” under nondisclosure is effective to

convey quality information to potential customers. For example, Nike spends

minimal effort advertising the quality of its products. Instead, it educates

customers through advertising to trust its reputation by reinforcing its brand

names. (2) We argue that when the quality disclosure cost is high, firms

should invest resources to facilitate customers obtaining samples and the

availability of ambient information to reduce customer sample uncertainty,

e.g., social media marketing. Indeed, firms are well aware that as social media

marketing is increasingly popular (see Tuten and Solomon [90], Hoffman and

Fodor [46]).

Finally, we consider congestion in the service context and find that the

demand rate also plays a critical role on the quality disclosure decisions. In

summary, our findings are complementary to the existing quality disclosure

literature by relaxing the rational expectation assumption, and show that

under consumer bounded rationality the optimal disclosure strategy is quite

different from what the classical unraveling result predicts. Our results also

provide a new explanation for the incomplete voluntary disclosure observed

in many markets.

The remainder of this chapter proceeds as follows: Section 2.2 reviews

the related literature. We present the model in Section 2.3 and analysis

and results in Section 2.4. The model is extended to service settings with

congestion in Section 2.5. We conclude in Section 2.6.
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2.2 Literature Review

Our paper is closely related to the economics and marketing literature on

voluntary quality disclosure. Grossman [40] and Milgrom [67] appear to be

the earliest papers on voluntary quality disclosure. They draw the classical

unraveling result: firms should disclose their private quality information if

disclosure and quality verification are costless. The rationale is as follows. If

the disclosure cost is negligible, then consumers with rational expectations

who cannot learn will rationally assume that nondisclosing firms have the

lowest quality, which motivates firms to reveal private quality information.

Jovanovic [58] argues that a firm should disclose quality information only if

its quality level is above a threshold if there is a disclosure cost. Matthews

and Postlewaite [66] and Shavell [81] show that mandatory disclosure may

motivate sellers to reduce information collection if information acquisition is

costly. They assume customers to hold a rational expectation about nondis-

closure.

However, some empirical studies, including Spranca et al. [87], Mathios

[65], Jin [57], and Xiao [93], show that voluntary disclosure is incomplete in

many markets. Board [11] argues that firms may fail to disclose their quality

because quality disclosure would intensify price competition with heteroge-

neous consumers. Guo and Zhao [41] study the relationship between the

amount of information disclosed and the timing of disclosure (simultaneous

or sequential). In the literature on quality disclosure, a common assumption

is that customers have rational expectations in the sense that any nondis-

closed product is assumed to be of lowest quality.

As mentioned earlier, the customer rational expectation on nondisclosure

is a strong assumption. In practice, customers may not take nondisclosure

as a “signal” of low quality (see the examples in Fishman and Hagerty [35],

Hirshleifer and Teoh [45], Stivers [88], and Schwartz [77]). Fishman and
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Hagerty [35] argue that some consumers lack the technical expertise neces-

sary to interpret disclosed quality information. Brown et al. [13] find that

some moviegoers do not expect low quality from a cold opening even though

rational moviegoers should infer that cold-opened movies are of poor quality.

As pointed out by Dranove and Jin [26], the unraveling result hinges on

the rational expectation assumption that “Consumers hold a rational expec-

tation on the quality of nondisclosed products”. Our paper fills a gap in the

existing literature by relaxing the rational expectation assumption.

Our quality disclosure strategy is similar to the counter-signaling struc-

ture in Feltovich et al. [32]. They consider a signaling game with three types

of senders. A sender can send costly and noisy information on his or her type

to the receiver, and the signal cost is higher for lower types. They show that

in equilibrium medium types signal to separate themselves from low types,

but high types choose not to signal. However, their setting is different from

our quality disclosure setting. Note that in quality disclosure, firms do not

send costly noisy quality information with heterogeneous cost functions to

customers. Rather, they decide whether to disclose quality information with

a fixed cost. Moreover, we assume that customers do not infer quality from

a firm’s disclosure strategy but infer it from other customers’ experiences

under nondisclosure.

This work is related to the operations literature on the firm’s optimal in-

formation disclosure strategy. Hu et al. [48] study a two-period group-buying

problem where a firm chooses whether to disclose the number of sign-ups ac-

cumulated in the first period. Hu et al. [50] study the impact of real-time

delay information on a service system. They find that some amount of infor-

mation heterogeneity in the population can lead to more efficient outcomes

than information homogeneity. In this stream of works, whether the firm dis-

closes sales volume or system state would affect customers’ purchase behavior
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differently.

Our modeling framework of customer bounded rationality follows the re-

cent economics literature on anecdotal reasoning, which is proposed by Os-

borne and Rubinstein [70]. This modeling framework has been widely ap-

plied in a variety of economic settings (see, e.g., Spiegler [85, 86], and Szech

[89]). Several recent studies have applied the anecdotal reasoning framework

to the marketing and operations management settings. For example, Huang

and Yu [53] adopt it to analyze the profitability of opaque selling. Huang and

Chen [51] consider the impact of anecdotal reasoning behavior on the pricing

and capacity decisions of queueing systems. Huang and Liu [52] examine

the impact of anecdotal reasoning behavior on pricing and stocking/capacity

decisions. Different from these studies, we consider the impact of customer

bounded rationality versus rational expectation on a firm’s quality disclosure

decision.

The anecdotal reasoning behavior of consumers studied in this work is

also related to some recent papers studying operational decisions under so-

cial learning. For example, Yu et al. [94] study the impact of consumer-

generated quality information (e.g., consumer reviews) on a firm’s dynamic

pricing strategy in the presence of strategic consumers. Papanastasiou and

Savva [71] study dynamic pricing in the presence of social learning and strate-

gic consumers. This essay is different from theses works because this essay

studies the impact of customer bounded rationality on a firm’s quality dis-

closure decision.

2.3 Model Setup

We consider a simple model to isolate and demonstrate the impact of cus-

tomer bounded rationality on a firm’s quality disclosure decision. The firm
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sells an experience good (either a physical product or service) to a popula-

tion of λ homogeneous customers. We assume that the product or service

is infrequently purchased by individual customers, e.g., durable goods, long-

term financial services, healthcare specialist, and high end restaurants. To

capture service quality uncertainty of experience goods, we assume that for

each individual customer, the associated quality of service ζ is either high,

denoted by “H,” with probability P(ζ = H) = α, or low, denoted by “L,”

with probability P(ζ = L) = 1 − α, where α ∈ [0, 1]. There are two main

factors in quality uncertainty for experience goods. (1) Customers are in-

herently uncertain about consumption even when service quality remains

unchanged for individual customers. That uncertainty can be affected by

personal factors such as health and mood, which tend to be independent

among different customers and unobservable to other customers. For exam-

ple, customers may have different perceptions of the service quality of the

same entertainment-related service. (2) The quality of a service process is

uncertain. For example, in hospitals, medical services are uncertain for pa-

tients. We assume that the service provider knows the value of α but it is

unknown to all customers. Throughout the paper, quality level α is fixed.

We assume that customers are homogeneous and risk-neutral. The cus-

tomer valuations for service quality levels H and L are vH and vL, respec-

tively, such that vH > vL. A customer with perceived valuation V will

purchase the service if V −p ≥ 0, where p is the price. Suppose that the firm

decides to disclose its quality information. Then, the customer (expected)

valuation of the service is V = αvH +(1−α)vL, as all customers know α from

the firm’s disclosure. If the firm decides not to disclose quality information,

to model customer bounded rationality, we adopt the anecdotal reasoning

framework (see, e.g., Osborne and Rubinstein [70], and Spiegler [85, 86]) and

assume that customers have a limited number of samples/anecdotes from
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which to infer service quality. To isolate the impact of customer bounded

rationality on the firm’s quality information disclosure decisions, we assume

that customers make their purchase decisions based solely on the samples

they obtain if the firm does not disclose quality information.

The firm’s objective is to decide the price charged for the product/service

so as to maximize its expected profit. In addition, the firm has to decide

whether (1) to disclose quality information α, i.e., adopt the disclosure strat-

egy, or (2) not to disclose and allow customers to infer the quality informa-

tion from past customers’ experiences, i.e., adopt the nondisclosure strategy.

There is a disclosure cost K ≥ 0. In the basic model, we assume that the

firm has sufficient capacity to serve all customers, i.e., congestion is not a

major concern. We consider congestion in Section 2.5.

Notably, in the existing literature, it is commonly assumed that customers

have no access to samples of past experiences and rationally expect the worst

quality level for the firm that does not disclose quality information (Grossman

[40], and Milgrom [67]). Our main objective in this paper is to investigate

the impact of customer bounded rationality on a firm’s quality disclosure

decision by relaxing this rational expectation assumption.

2.4 Analysis and Results

In this section, we investigate the firm’s optimal pricing strategies under the

disclosure and nondisclosure strategies in the presence of customer bounded

rationality.

2.4.1 Disclosure Strategy

Under the disclosure strategy, quality information α is known to all cus-

tomers. Let pD be the price under the disclosure strategy. Because customers
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are risk-neutral, the (expected) surplus for each customer is αvH+(1−α)vL−

pD. A customer will purchase the service only if her surplus is non-negative;

otherwise, she will not make the purchase and leave the market. Given that

a profit-maximizing firm wants to attract customer population λ, its optimal

pricing problem is provided as follows:

π∗D(λ) = max
pD≥0

pDλ−K (2.1)

subject to αvH + (1− α)vL − pD ≥ 0.

The optimal strategy under the disclosure strategy if the firm attracts pop-

ulation λ is given in the following lemma.

Lemma 2.1. Suppose that a firm attracts customer population λ. Then,

under the disclosure strategy, its optimal strategy is as follows.

p∗D = αvH + (1− α)vL. (2.2)

In addition, the firm earns a profit π∗D(λ) = [αvH + (1− α)vL]λ−K.

The optimal solution for (2.1) can be obtained by letting αvH + (1 −

α)vL − pD = 0. Note that π∗D(λ) is an increasing function of λ.

Next, we provide the optimal decision for the firm under the disclosure

strategy.

Lemma 2.2. Let λ̃D = K
αvH+(1−α)vL

. The firm can earn a profit π∗D(λ) =

[αvH + (1−α)vL]λ−K by adopting the disclosure strategy, which is nonneg-

ative if and only if λ ≥ λ̃D.

Because customers are homogeneous, if market size λ is sufficiently large,

it is optimal for the firm to enter the market by attracting all customers;

otherwise it is not profitable for the firm to enter the market.
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2.4.2 Nondisclosure Strategy with Customer Bounded

Rationality

In the extant literature, it is typically assumed that rational customers infer

low quality in the absence of information disclosure. In practice, however,

particularly in the case of experience goods, customers may not take nondis-

closure as a signal of low quality. For example, customers may not pay

attention to the available information if they do not understand it, or they

may make naive inferences about nondisclosure (Dranove and Jin [26]). Cus-

tomers can also acquire related quality information from other customers’

experiences via word-of-mouth or user-generated content and then reason

about the firm’s quality. For example, Yelp allows users to share their dining

experiences in local restaurants. Potential customers may also ask friends

who have bought the product before about their experiences. When quality

information is not disclosed, potential customers are likely to rely on such

anecdotes as “my colleague spent a terrible night at that hotel” or “my friend’s

Toyota has a smooth ride and is extremely fuel efficient.” The salient feature

of our model is to incorporate such bounded rationality by relaxing the ra-

tional expectation assumption under nondisclosure. We adopt the anecdotal

reasoning framework proposed in the recent economics literature (see, e.g.,

Osborne and Rubinstein [70]; Spiegler [85, 86]) to model customer bounded

rationality. Based on the past experiences of others (i.e., word-of-mouth),

customers rely on anecdotal reasoning to make their own purchasing deci-

sions.

Remark 2.1. Note that in the economics and marketing literature, the Bayesian

updating rule is sometimes adopted to model customer learning behavior.

However, in our context, we consider the experience goods with infrequent

purchases, e.g., durable goods, long-term financial services, specialists in
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healthcare, high end restaurants. As we can see below, we assume differ-

ent generations of customers to enable learning. With the Bayesian updating

rule, customers are required to fully rational and update their beliefs in each

period, which is not reasonable in our setting. Moreover, there is evidence to

show that customers do make decisions based solely on small samples (Tver-

sky and Kahneman [91], Osborne and Rubinstein [70], and Fiedler and Juslin

[33]).

Sequence of Events.

To model customer bounded rationality, we consider a setting in which a

firm provides a product/service to different generations of new customers.

There are infinitely many discrete “stages" indexed by k = 1, 2, 3, ... More-

over, we also assume each stage to have λ̄ customers. The firm first commits

to using the nondisclosure strategy and to setting price p before time 0. Re-

call that P(ζ = H) = α ∈ [0, 1] is the probability of obtaining high service

quality, where ζ denotes a customer’s service quality “realization" from the

firm. Customers with bounded rationality do not know the exact value of

α. Motivated by Spiegler [85] and Huang and Yu [53], we use the following

dynamics to model the anecdotal reasoning process. In Stage 1, generation-1

new customers enter the market and are randomized with equal probabilities

(assuming any other strictly positive probability does not affect our results)

in making their purchase decisions given that they have no information about

α. After making their purchasing decisions, the customers obtain their indi-

vidual service quality realizations, and then they leave the market. In Stage

2, generation-2 customers enter the market. Before making a purchasing deci-

sion, each generation-2 customer has an opportunity to communicate with N

generation-1 customers, obtainingN samples/anecdotes of the service quality

realizations in stage 1. In general, in Stage k = 1, 2, 3, ..., each generation-k
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from previous 
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t=2 t=1 

Figure 2.1: Sequence of Events

customer can sample N realizations of generation-(k′) customers before mak-

ing her purchasing decision, for some k′ < k. Each generation-k customer

decides whether to purchase or not based on her samples. However, her own

service quality offered by the firm at Stage k is an independent realization

from her samples. Hence, the quality level that she actually obtains probably

differs from that in her samples.

S(N) Framework

We now examine the S(N) framework in which each customer is assumed

to obtain N samples and “combine” multiple samples by simply taking the

sample average. We use the indicator random variable I{i,j} to denote the

type of sample j that customer i obtains. If the jth sample that customer i

obtains is product/service H, then I{i,j} = 1; otherwise, I{i,j} = 0. Note that

E[I{i,j}] = α and that we focus on the steady-state dynamics of the system

described in Figure 2.1. The N samples can be obtained from previous
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customers, and each customer’s samples are independent of those of other

customers. Each customer relies on the N samples obtained to make her

purchasing decision. Let

αi(N) ≡ 1

N

N∑
j=1

I{i,j}

be the mean of the samples obtained by customer i. Then, the estimated

(expected) valuation of the service for customer i can be expressed as V =

αi(N)vH + (1 − αi(N))vL. If N = ∞, then all customers learn the exact

quality information α. We focus on cases in whichN <∞, i.e., each customer

can obtain a limited number of samples.

Note that we assume that customers make their purchasing decisions

based solely on their obtained samples. Then, customer i purchases from the

service provider if and only if

αi(N)vH + (1− αi(N))vL − p ≥ 0. (2.3)

Let γ(p) be the fraction of customers who purchase the product/service given

price p. Based on (2.3), if the customer purchases from the firm, the samples

she obtains must satisfy the following condition.

αi(N) ≥ p− vL
vH − vL

. (2.4)

Let B(n,N, α) =
(
N
n

)
αn(1 − α)N−n be the probability mass function of the

binomial distribution with parameters N and α. Then we have the following

result.
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Lemma 2.3. Given p, γ(p) can be expressed as

γ(p) = 1−
bN p−vL

vH−vL
−εc∑

n=0

B(n,N, α) (2.5)

for an arbitrarily small ε > 0. In addition, γ(p) is decreasing in p.

If the firm decides to adopt the nondisclosure strategy, then it chooses

p to maximize its expected profit π(p) = pγ(p)λ. Solving this optimization

is challenging because there is no explicit expression for γ(p). However, we

have the following result to characterize the optimal strategy.

Lemma 2.4. The optimal pricing strategy can be described as follows.

(i) The optimal price p∗ satisfies the following condition.

p∗ = vL +
j

N
(vH − vL), for some j ∈ {0, 1, 2, . . . , N}.

(ii) The optimal price p∗ under this nondisclosure strategy can be found by

using the following algorithm.

(a) For each j = 0, 1, . . . , N , compute the proportion of customers

who purchase, γj = 1 −
∑j−1

n=0 B(n,N, α), and the corresponding

profit π∗j = [vL + j
N

(vH − vL)]γjλ.

(b) The optimal firm profit is

π∗ND = max{ max
j=0,1,··· ,N

π∗j , 0}.

Let j∗ = arg maxj=0,1,··· ,N π
∗
j be the optimal price index. The opti-

mal price is p∗ = vL + j∗

N
(vH − vL) if π∗j∗ ≥ 0.

Note that π∗ND is polynomial in α, which is neither convex nor concave. It

is unclear how quality level α will affect the optimal price due to the technical
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challenge imposed by the polynomial function of α. To tackle this problem,

we first introduce the notion of log-supermodularity.

Definition 2.4.1. Let (X,≥) be a lattice. A function h : X → R is said to

be log-supermodular if it is non-negative and h(x∨y) ·h(x∧y) ≥ h(x) ·h(y)

for all x, y ∈ X.

Remark 2.2. Athey [1] states the following properties for log-supermodularity.

(i) If h is positive, then h is log-supermodular if and only if log(h(x)) is super-

modular. (ii) Products of log-supermodular functions are log-supermodular.

(iii) A sufficient condition for
∫
u(x, s)f(s; θ)dµ(s) being log-supermodular is

that u and f are log-supermodular.

In particular, log-supermodularity implies nondecreasing strategies.

Lemma 2.5 (Athey [1]). Suppose that f is non-negative. Then, x∗(θ) ≡

arg maxx∈A U(x, θ) is nondecreasing in θ for all u : X × S → R+ log-

supermodular, if and only if U is log-supermodular in (x, θ) for all u :

X × S → R+ log-supermodular.

Utilizing the notion of log-supermodularity and Lemma 2.5, we obtain

the following result.

Lemma 2.6. The profit function π∗j (α) is log-supermodular in (j, α). As a

result, under the nondisclosure strategy we have (i) the optimal price index

j∗(α) is nondecreasing in α; (ii) the optimal price p∗ is nondecreasing in α,

and the proportion of customers who purchase, γj∗ is nonincreasing in α.

Despite the noisy sample obtained by each customer, Lemma 2.6 implies

that under the nondisclosure strategy, a firm with a high quality level should

charge a high price for its service. This is because as α increases, the prob-

ability of getting more H samples is higher and the firm is better off by

charging a high price.
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Lemma 2.6 also implies that, as α increases, the proportion of customer

who will buy the product becomes smaller. Although the firm’s target cus-

tomers becomes less, their average valuations are higher. Those high valua-

tions enable the firm to earn a higher marginal profit and ultimately switch

its focus from a mass market to this niche segment of customers.

When determining the price under the nondisclosure strategy, a firm

makes a trade-off between a higher profit margin and a larger demand quan-

tity. When α is small, setting a low price enables the firm to attract enough

customers to make a profit; whereas when α is large, the high profit margin

motivates the firm to increase its price and thus brings more profit to the

firm than a low price.

Optimal Disclosure Decision

Recall that if the firm discloses quality information, its corresponding optimal

profit is π∗D = [αvH + (1 − α)vL]λ − K, as shown in Section 2.4.1. Let

πCL denote the firm’s optimal profit in the presence of customer bounded

rationality. It follows that πCL = max{π∗ND, π∗D}. Specifically, if π∗ND ≥ π∗D,

then the nondisclosure strategy is optimal; otherwise, the disclosure strategy

is optimal. It is unclear whether π∗ND − π∗D is increasing or decreasing in α.

Interestingly, we have the following result.

Proposition 2.1. There exists α, α such that 0 < α ≤ α < 1, and it is

optimal to adopt the nondisclosure strategy for α ∈ [0, α] ∪ [α, 1], whereas it

may be optimal to adopt the disclosure strategy for some α ∈ [α, α].

Proposition 2.1 states that it is optimal to adopt the nondisclosure strat-

egy when α is either small ([0, α]) or large ([α, 1]). If α is medium ([α, α]),

then it may be optimal to adopt the disclosure strategy.

One might expect the disclosure strategy to be monotone in the qual-

ity level. For example, Lemma 2.6 stipulates that the price is increasing in
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quality level. However, Proposition 2.1 implies that a firm might be willing

to disclose quality information if its quality level is medium, but will adopt

the nondisclosure strategy if it is of low or high quality. The key message

we want to deliver is that customer bounded rationality has significant im-

plications for a firm’s optimal disclosure strategy, which may be much more

complicated than what we thought previously. Another important factor in

a firm’s quality disclosure decision is disclosure cost K. If K is sufficiently

large, it is always optimal to adopt the nondisclosure strategy.

Hence, with customer bounded rationality, a firm’s quality disclosure de-

cision becomes complex. Correspondingly, the firm should be more careful

in deciding whether to disclose quality information in the presence of social

media and word-of-mouth. Interestingly, our results are consistent with some

recent empirical findings. For example, Luca and Smith [63] show that mid-

ranked business schools in the United States are the most likely to disclose

their ranking information. Bederson et al. [9] empirically find the quality dis-

closure strategy is very similar to what our model predicts: when Maricopa

County in Arizona adopted voluntary restaurant hygiene grade cards (A, B,

C, D), the better A-grade restaurants tended not to disclose their grades,

whereas worse As and better Bs disclosed their grades voluntarily.

What is the intuition of our result? There are two forces driving the

profitability of nondisclosure: pricing flexibility and the variability of cus-

tomers’ quality perceptions. Note that under disclosure, a firm can charge

only the expected valuation. One major advantage of nondisclosure for the

firm is pricing flexibility, i.e., it can choose from multiple candidate prices

as individual customers may receive different samples. The disadvantage of

nondisclosure is that customers may have different perceptions of firm qual-

ity (variability), e.g., some customers may underestimate its quality, whereas

others may overestimate it. When determining its pricing strategy, a firm
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makes a trade-off between a higher price and lower demand. When firm

quality is high or low, under anecdotal reasoning, there is little variability in

customers’ quality perceptions (i.e., Nα(1−α) for the binomial distribution).

Then, although customers’ average estimation is consistent with the firm’s

quality level overall, some customers may overestimate its quality. A high-

quality firm can exploit overestimating customers by charging a higher price

and capturing most of the customers with a perception of high quality. As a

result, the firm has no incentive to disclose quality information. However, a

medium-quality firm may anticipate that the samples collected by customers

are noisy and that there are a significant proportion of customers who either

overestimate or underestimate its quality. As a result, the firm may not be

able to utilize the pricing flexibility, as it can charge a lower or higher price

only by risking the loss of a significant market share, thereby motivating it

to disclose quality information to differentiate itself from low-quality firms.

We now provide a useful refinement of Proposition 2.1. Recall that it

is optimal to adopt the nondisclosure strategy in at least two regions: the

region close to 0 ([0, α]) and the region close to 1 ([α, 1]). More specifically,

for the regions closest to 0 and 1, we have the following result.

Corollary 2.3. There exists 0 < α0 < α and α < αN < 1 such that it is

optimal to adopt the nondisclosure strategy with j∗ = 0 for α ∈ [0, α0], and

the nondisclosure strategy with j∗ = N for α ∈ [αN , 1].

Corollary 2.3 states that for the region closest to 0 ([0, α0]), it is always

optimal to adopt the nondisclosure strategy with j∗ = 0, i.e., attracting

all customers, and for the region closest to 1 ([αN , 1]), it is always optimal

to adopt the nondisclosure strategy with j∗ = N , i.e., attracting customers

whose samples are all “H.” These results hold because j∗(α) is nondecreasing

in α and the nondisclosure strategy is optimal in the regions close to 0 or 1.

To further illustrate the optimal disclosure strategy, Figure 2.2 shows
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the profits accruing from both the nondisclosure and disclosure strategies.

We find that when firm quality level is either high or low (α ∈ [0, 0.39]

or [0.79, 1]), it is optimal to adopt the nondisclosure strategy. In addition,

when α is at a medium level, the nondisclosure strategy might be optimal.

For example, for α ∈ [0.42, 0.56], [0.67, 0.76], the optimal strategy is the

nondisclosure strategy with j∗ = 1 and j∗ = 2, respectively. In other regions,

disclosure is the optimal strategy.

Note that if each customer is able to obtain enough samples, the firm no

longer needs to disclose quality information.

Lemma 2.7. There exists N0 such that if N > N0, it is optimal to adopt the

nondisclosure strategy.

Lemma 2.7 shows that when customers have enough samples, the firm

should adopt the nondisclosure strategy.

Figure 2.3 shows the impact of N on firm’s quality disclosure decision. We

can observe that when N is not too large, the firm does not disclose quality

information when α is high or low, but does disclose when α is medium

(although, in some small regions, it may still be optimal not to disclose

quality information). In addition, the disclosure region tends to decrease

as N increases: as customer reasoning becomes more effective, the firm has
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Figure 2.2: Profits for the Nondisclosure and Disclosure Strategies ( N=5,
vH = 7, vL = 5, λ=100 and K=80)
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α [0,0.40] [0.41,0.41] [0.42,0.55] [0.56,0.61] [0.62,0.66]
j∗ 0 1 1 1 2
OPT ND D ND D D
α [0.67,0.76] [0.77.0.78] [0.79,0.91] [0.92,0.98] [0.99,1]
j∗ 2 2 3 4 5
OPT ND D ND ND ND
OPT: Optimal Strategy; ND: Nondisclosure Strategy; D: Disclosure Strategy

Table 2.1: Profits for the Nondisclosure and Disclosure Strategies ( N=5,
vH = 7, vL = 5, λ=100 and K=80)
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fewer incentives to disclose, and when customers have enough samples, the

firm should always adopt the nondisclosure strategy.

To better understand how customer bounded rationality affects a firm’s

disclosure decision, we consider the special case of N = 1, i.e., the S(1)

framework. In the S(1) framework, each individual customer obtains one

anecdote/sample about a service quality realization that occurred in some

previous period. The optimal profit π∗ is as follows.

π∗ = {[αvH + (1− α)vL]λ−K,αvHλ, vLλ}.

Proposition 2.2. Under the S(1) framework, if the condition that 1− K
vLλ

<

vL
vH

< K
(vH−vL)λ

holds, the firm should always adopt the nondisclosure strategy;

otherwise, the optimal strategy can be divided into three segments: the firm

should adopt the disclosure strategy when α is at a medium level, and the

nondisclosure strategy when α is small or large.

Proposition 2.2 is consistent with the results in Proposition 2.1; that is,

the firm should not disclose quality information when α is relatively large or

small, but should disclose it when α is at a medium level.

Our findings underscore the importance of customer bounded rationality

and demonstrate that the optimal quality disclosure decision is not straight-

forward. In addition, our model provides a new explanation for experience

goods with incomplete voluntary quality disclosure, e.g., high-quality firms

have no incentive to disclose. The managerial implications of our results for

experience goods include (1) In contrast to the classic unraveling result, in

the presence of customer bounded rationality, high quality firms do not need

to disclose their quality. Word-of-mouth or “reputation” under nondisclosure

is effective to convey their quality to potential customers. For example, Nike

spends minimal effort advertising the quality of its products. High-quality
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firms should educate customers, e.g., through advertising, that they should

trust their “reputation” by reinforcing their brand names. Hence, nondisclo-

sure may not be a “signal” of low quality. (2) We argue that when the quality

disclosure cost is high, firms should invest resources to facilitate customers

obtaining samples, e.g., in social media marketing. Indeed, firms are well

aware of this as social media marketing is increasingly popular (see Tuten

and Solomon [90], Hoffman and Fodor [46]).

2.4.3 Impact of Ignoring Customer Bounded Rational-

ity

In this section, we investigate the impact of ignoring customer bounded ratio-

nality by using the unraveling result on firm profit (e.g., the firm may simply

adopt the unraveling result even in the presence of customer bounded ratio-

nality). When consumers hold a rational expectation about nondisclosure,

the optimal firm profit under the disclosure strategy is reported in Appendix

B.

Now we are ready to measure the value of customer bounded rationality

against the result of ignoring it and using the classic unraveling result. We use

the profit loss δ between the profit with customer bounded rationality, πCL,

and without it, πNL, to measure the impact of ignoring customer bounded

rationality:

δ =
πCL − πNL

πNL
× 100%.

Lemma 2.8. The profit loss δ by ignoring customer bounded rationality and

using the unraveling result is nondecreasing in K.

Lemma 2.8 states that if the quality disclosure investment is large, firms

should not ignore customer bounded rationality. In this case, firms would be

better off by investing resources to facilitate customer obtaining samples.
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Figure 2.4 depicts the profit loss by ignoring customer bounded rationality

and using the unraveling result under different K and α. It can be seen that

the profit loss tends to increase in α, and the profit loss can be up to 30%

for a large K.

2.5 Quality Disclosure with Congestion

In practice, customers may have to wait for services if the capacity of a service

provider is limited. For example, in hospitals and theme parks, waiting is

quite common for patients and visitors, respectively. Customer waiting time

may also affect customers’ choices. In this section, we analyze the quality

disclosure decision in the presence of congestion. We adopt the standard

queueing setting; that is, we assume that the firm faces an independent

demand stream with customers arriving according to a Poisson process with

total rate λ. The firm serves customers one at a time on a first-come, first-

served basis. We assume service times to be independent and identically

distributed random variables denoted by X. In particular, we assume that X

is of the form Y/µ and that Y is an exponentially distributed random variable

with mean equal to 1. Hence, service times are exponentially distributed with

mean E[X] = 1/µ. The parameter µ is a scaling parameter that corresponds

to the service rate or capacity. There is also a per unit time marginal capacity

cost c.

Random variable Y can be viewed as the work content associated with

each customer. Given the exponential nature of both customer inter-arrival

times and service times, the firm is modeled as an M/M/1 queue. There is

an extensive body of literature on the economics of queues focusing primarily

on the M/M/1 queue; see Hassin and Haviv [42] for a review.

Let λ be the effective arrival rate of the firm, which results from customer
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Figure 2.4: Profit Loss δ by Ignoring Customer Bounded Rationality and
Using the Unraveling Result (vH = 7,vL = 7, and λ = 100)
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choice. Because the capacity is limited, not all customers can join the service

provider. Then, the expected delay in equilibrium for customers is E[W ] =

1
µ−λ .We assume that customers face an invisible queue, i.e., customers cannot

observe the exact queue length, demand rate or capacity level. However, they

can form rational expectations about the expected delay E[W ]. For example,

before making a purchase an individual customer may not observe real-time

delay information, but its expectation is observable to waiting customers.

This is quite different from service quality, which is private information held

by individual customers. In some settings, the firm simply announces the

expected delay. For example, Disney theme parks list the average waiting

times for various activities, and some hospitals also post expected waiting

times.

The firm’s objective is to decide whether to disclose its quality information

and to determine the corresponding price to charge for each service and the

capacity level so as to maximize its expected profit.

Given a customer with valuation V , price p for the service, and expected

delay E[W ], the customer will purchase the service if V − p − hE[W ] ≥ 0,

where h is the disutility or waiting cost of the delay per unit of time.

Under the voluntary disclosure strategy, quality information α is known

to all customers. Let pD and µD be the price and capacity level under the

disclosure strategy, respectively. Each customer’s surplus is αvH+(1−α)vL−

pD − hE[W ], where E[W ] = 1
µD−λ

given arrival rate λ (λ ≤ λ). Given that

a profit-maximizing firm wants to attract customers with demand rate λ, its
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optimal decision problem is as follows.

π∗D(λ) = max
pD≥0,µD≥0

pDλ− cµD −K (2.6)

subject to αvH + (1− α)vL − pD − h
1

µD − λ
≥ 0,

µD > λ.

Under the nondisclosure strategy, for analytical simplicity and to obtain

managerial insights, we focus on the S(1) framework (our results still hold

qualitatively under the S(N) framework). More specifically, we consider the

S(1) framework in which each customer is assumed to obtain one sample

from a previous customer who purchased the service from the firm.

Under the S(1) framework, customer i purchases the service if and only

if

αi(1)vH + (1− αi(1))vL ≥ p+ hE[W ], (2.7)

i.e., she makes the purchase if the valuation derived from her sample is no

smaller than the selling price plus the expected waiting cost. Under the

nondisclosure strategy, the firm can either attract only customers with an “H”

sample (H-type customers) or all customers. We provide the optimal selling

strategies under the disclosure and nondisclosure strategies in Appendix C.

Define λ1 =

(√
hc+
√

(vL−c)K
vL−c

)2

, λ2 =

(√
hc+
√
hc+(vL−c)K
vL−c

)2

,

α1 =

(√
hcλ−

√
[(vL−c)λ−

√
hcλ]2−(vL−c)Kλ

(vL−c)λ

)2

, and

α2 =

(√
hcλ+

√
[(vL−c)λ−

√
hcλ]2−(vL−c)Kλ

(vL−c)λ

)2

. The following proposition charac-

terizes the situations in which the firm should disclose quality information.

Proposition 2.3. If αλ(vH − vL) ≥ K, the optimal disclosure strategy is

provided in Table 2.2. If αλ(vH − vL) < K, the nondisclosure strategy is

optimal.
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Conditions Optimal Strategy
λ < λ1 Nondisclosure

λ1 ≤ λ ≤ λ2
α < α1 or α > α2 Nondisclosure
α1 ≤ α ≤ α2 Disclosure

λ > λ2
α ≤ α2 Disclosure
α > α2 Nondisclosure

Table 2.2: Optimal disclosure strategy under the condition αλ(vH − vL) ≥ K

Proposition 2.3 shows that the results in Proposition 2.1 still hold in the

presence of congestion. With congestion, demand rate λ also plays a critical

role in the quality disclosure decision. When the demand rate is moderate,

it is optimal for the firm to disclose quality information when its quality

level is medium and not to disclose it when it is either high or low. When

the demand rate is high, contrary to the unraveling result, it is optimal for

the firm to disclose quality information if its quality level is low but not

to disclose it otherwise. In addition, we find that when the demand rate

is sufficiently low, the firm has no incentive to disclose quality information.

The managerial implication is that in the presence of congestion, the optimal

disclosure strategy is jointly determined by firm quality and the demand rate.

Unlike the case without congestion, when the demand rate is high, it

is optimal only for a low-quality firm to disclose quality information. Why

should the firm disclose its low quality information with the additional quality

disclosure cost? Intuitively, with customer bounded rationality, when a firm’s

quality level is low, it is not easy for customers to receive an H sample.

Under the nondisclosure strategy, the firm sets a low price with a capacity

investment cost, which adversely affects its profit. Switching to the disclosure

strategy might garner the firm more profit in this case.

Figure 2.5 illustrates the optimal disclosure strategy for different combi-

nations of α and λ. If λ is large, it is optimal to (1) adopt the nondisclosure

strategy by attracting all customers when α is small; (2) adopt the disclo-

sure strategy when α is at a medium level; and (3) adopt the nondisclosure
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strategy by attracting customers who obtained an “H” sample (H-type cus-

tomers) only when α is large. When λ is medium, it is optimal not to disclose

quality information. Finally, if λ is small, it is optimal for the firm not to

enter the market.

2.6 Concluding Remarks

Deciding whether to disclose quality information on experience goods is of

strategic importance for firms. The classical unraveling result stipulates that

firms are willing to disclose quality information because rational customers

may infer nondisclosure as low quality. In practice, however, in the context

of for experience goods, customers may not be rational enough to realize that

a firm’s disclosure decision is closely related to its quality information, or is

even a direct “signal” of quality.

The salient feature of this paper is to relax the rational assumption con-

cerning nondisclosure. Instead, under nondisclosure we assume customers

acquire quality information through word-of-mouth or social media on other

customers’ experiences, i.e., engage in anecdotal reasoning. We examine

firm’s disclosure of quality information on experience goods under customer

bounded rationality. We find that determining the optimal disclosure strat-

egy in this context can be complex. Specifically, our results show that a firm

with either a high or low quality level will prefer to hide quality information.

A firm with a medium quality level, however, may have an incentive to dis-

close such information. This counterintuitive result arise with or without the

presence of congestion. This is because if the service provider’s quality level

is either high or low, the information derived from samples by customers is

relatively consistent with its actual quality level, and some customers may
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Figure 2.5: Optimal Strategy for Different Combinations of α and λ
(vH = 7, vL = 5, c = 4, K = 30 and h = 1)

overestimate its quality. As customers may obtain different samples, un-

der nondisclosure, particularly if the firm enjoys pricing flexibility: the firm

can exploit customer behavior by charging a higher price than its disclosure

counterpart. However, when the firm’s quality level is medium, the quality

information obtained from samples can be very noisy, and many customers

may underestimate the firm’s quality, thereby motivating the firm to disclose

it.

Thus, our results provide a new explanation for the incomplete nature of

voluntary disclosure in many markets. In particular, our results imply that

word-of-mouth or “reputation” under nondisclosure is effective in conveying

firms’ high quality information to potential customers. High-quality firms

are advised to educate potential customers, e.g., through advertising or social

media, to trust their “reputation” by reinforcing their brand names.
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Chapter 3

Performance Bounds for

Distribution Systems

3.1 Introduction

We consider a continuous-review stochastic distribution inventory system

with one warehouse and multiple retailers (OWMR). Customer demands arise

only at retailers, and each retailer faces an independent Poisson demand

process. The warehouse replenishes the retailers and receives stock from an

outside supplier with unlimited capacity. Each shipment, either from the

supplier to the warehouse or from the warehouse to a retailer, regardless

of its size, takes a positive constant lead time and triggers a positive fixed

setup cost. A holding cost is charged for each unit carried at the warehouse

and retailers. Excess demand that cannot be satisfied immediately at each

retailer is fully backlogged, but incurs a backlogging cost. The objective is

to minimize the long-run average system-wide cost.

It is well known that the optimal policy of such a system, even if it exists,

must be extremely complicated. For this reason, the research on OWMR

models focuses on easy-to-implement heuristic policies. Yet, to the best

of our knowledge, no policy has been provided with a performance bound,

(See Simchi-Levi and Zhao [83] for a comprehensive review). Recently, Hu
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and Yang [47] study a serial system with N stages. They introduce a class

of so-called modified echelon (r,Q) policies for serial systems (referred to

as MERQS): if the echelon inventory position at Stage i is at or below ri,

and Stage i + 1 at the upper stream has positive on-hand inventory, then a

shipment is sent to Stage i to raise its echelon inventory position as close as

possible to ri + Qi. For this heuristic, they provide worst-case performance

bounds under practical conditions. For example, if the upper stream has a

higher fixed cost than the downstream, which is typically the case in practice,

their heuristic policy is guaranteed to be 2-optimal. In addition, they identify

a set of conditions under which MERQS is asymptotically optimal when

certain system parameters scale up. A natural question is whether the notion

of modified echelon (r,Q) policies can be extended to analyzing a distribution

system so that certain performance bounds can be established. It turns out

that the answer is yes, yet the notion and analysis has to be adapted to the

distribution system in a nontrivial way.

There exist fundamental differences between the serial and distribution

systems. In a serial system, once a shipment arrives at the upstream instal-

lation, then sooner or later, all the units of this shipment will be shipped

to the subsequent downstream installation, in one or multiple shipments.

Whenever a shipment leaves from the upstream installation, it is no doubt

that this shipment will be sent to the consecutive downstream installation.

However, this is not the case in OWMR models where the units arriving at

the warehouse in one shipment may be sent to different retailers. The alloca-

tion policy in case of stock shortage at the warehouse is absent in the series

system. Specifically, if the on-hand inventory at the warehouse is not enough

to satisfy all the ordering requests from retailers, then it is the allocation

policy at the warehouse that determines how many units are sent to each

requesting retailer. In this way, the allocation policy determines inventory

38



flows and hence affects the system-wide cost directly. In addition, in OWMR

models the interaction between the warehouse and one retailer may affect

the rest retailers due to the coupling effects among retailers. For example,

after satisfying a retailer’s order, the warehouse may not have enough stock

to fully satisfy the subsequent ordering requests from other retailers. The

coupling effects complicate the whole system process and make tracking the

system status difficult.

To derive a performance guarantee, it is necessary to identify an upper

bound for the proposed policy and a lower bound for the optimal policy. In

our case, we take advantage of a lower bound established by Chen and Zheng

[19], who decompose the original OWMR system into N+1 subsystems with

each location/installation corresponding to a single-stage subsystem. This

lower bound can be constructed by assuming that each individual subsystem

(i.e., installation) runs independently. Moreover, this lower bound is eas-

ily computable, because it is the summation of N + 1 single-stage optimal

solutions. Then, we adopt a novel approach to derive an upper bound of

the system-wide cost under an arbitrary modified echelon (r,Q) policy with-

out exactly computing it. Based on the upper bound, we identify a heuristic

modified echelon (r,Q) policy with the values of r and Q for each installation

optimizing a single-stage subsystem. The computational procedure takes the

virtue of a standard single-stage (r,Q) system.

For performance bound analysis, we compare the cost upper bound of

our heuristic policy with the lower bound of the optimal cost established by

Chen and Zheng [19]. The actual performance of our heuristic policy must

be better than this provable performance bound. Specifically, we show that

the performance of our heuristic policy for an OWMR model is guaranteed

to be within
∑N

i=1 C
∗
i +Ĉ∗

0∑N
i=1 C

∗
i +C∗

0

times the optimal cost (i.e.,
∑N

i=1 C
∗
i +Ĉ∗

0∑N
i=1 C

∗
i +C∗

0

-optimal here-

after), where C∗i , C∗0 and Ĉ∗0 are the optimal costs for single-stage problems
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and can be easily computed as shown in Zheng [97]. We also provide an

alternative performance bound for our heuristic policy, which is determined

by the heuristic (r,Q) values of the warehouse and a specific retailer. In

addition, we provide asymptotic optimality results for our modified echelon

(r,Q) heuristic policy when a pair of system parameters, such as fixed setup,

holding and shortage costs, are scaled up. It is worthwhile noting that all the

theoretical results of our heuristic hold regardless of the sequence in which the

warehouse fills orders when there are multiple backlogged retailers (includ-

ing first-come, first-served as a special case) as long as each retailer’s order

is being fulfilled as much as possible. Lastly, numerical examples further

demonstrate that the proposed (r,Q) policy performs well in most instances

and tends to outperform the echelon-stock (r, nQ) heuristic policy studied in

Chen and Zheng [20].

Our contribution to the literature on stochastic distribution systems is

twofold. First, on the technical side, we fill the gap in the literature on

distribution systems by developing a heuristic policy with a performance

guarantee. The heuristic policy is easy to compute, as the solutions to several

single-stage (r,Q) inventory problems, and moreover, it is asymptotically

optimal. Second, on the implication side, the bounds and asymptotic results

demonstrate the robustness of single-stage (r,Q) inventory policies. That

is, (r,Q) policies based on single-stage systems with some adaption could

perform very well even for a distribution system. Moreover, as the existing

literature on distribution systems focuses on synchronization between the

warehouse and retailers following the lineage of the power-of-two policy, we

introduce a class of policies for the distribution system that do not require

synchronization, but still perform well with provable performance guarantees.
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3.2 Literature Review

The one-warehouse multi-retailer (OWMR) distribution system with stochas-

tic demands has been studied extensively. Various heuristics and correspond-

ing evaluation methods have been developed. For continuous-review OWMR

models with one-for-one replenishment policies (or equivalently, order-up-to-

S policies), Sherbrooke [82] provides the so-called METRIC (multi-echelon

technique for recoverable item control) approximation to evaluate the system-

wide cost. This method approximates the retailer lead time as the transporta-

tion times plus the average delay at the warehouse due to possible shortage.

Graves [39] provides a 2-moment approximation for cost evaluation and nu-

merically shows that this approximation is more accurate than the METRIC

which uses only the first moment. Axsäter [3] provides a simple method to

evaluate the inventory costs for OWMR systems with independent Poisson

demands and one-for-one replenishment policies. This method keeps track of

each supply unit as it moves through the system, and then characterizes the

time between the placement of an order and the occurrence of its assigned

demand unit.

For general batch ordering policies, Duermeyer and Schwarz [27] use the

METRIC type approach for batch ordering retailers. Chen and Zheng [20]

study an echelon stock (r,Q) policy, and provide exact results and approx-

imations for Poisson and compound Poisson process demands, respectively.

Axsäter [4] studies a similar system but uses a very different method to

evaluate the system-wide cost exactly with compound Poisson demands. In-

stallation or echelon stock (r,Q) policies with Poisson or compound Poisson

demand processes, are also studied in Forsberg [36], Axäster [2], Axsäter [5].

However, all of these papers rely on the key assumption that there exist no

explicit setup costs at any stage.

For OWMR models, only a few papers take setup costs into consideration.
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Clark and Scarf [23] is perhaps the first work dealing with multi-echelon in-

ventory systems with fixed setup costs. The authors provide a cost evaluation

method for an OWMR system, under the so-called balance assumption. The

balance assumption allows free lateral transshipments between all retailers,

and thus the warehouse stock can be used more efficiently than what is pos-

sible in reality. Under this assumption, Federgruen and Zipkin [30] provide a

lower bound on the minimum cost for a distribution system where only the

warehouse has a setup cost.

Chen and Zheng [19] extend this work to a more general OWMR model

with setup costs at all stages. They establish a lower bound on the minimum

system-wide cost by decomposing the original system into several subsystems

and assuming each subsystem runs independently of each other. Shang et al.

[80] consider a distribution inventory system with an (S, T ) policy. An (S, T )

policy operates as follows: Installation i (either the warehouse or a retailer)

reviews its echelon order inventory position every Ti time units and orders

up to a base-stock level Si. The authors develop an evaluation scheme and

provide a method to obtain the optimal base-stock level and reorder inter-

vals. For convenience of implementation and coordination across stages, they

focus on synchronized policies, i.e., when the warehouse receives a shipment

at the beginning of a system’s order cycle, all retailers place an order. Yet,

there remains a lack of rigorous argument showing that the optimal policy

for a distribution system with stochastic demands has to satisfy the synchro-

nized property. As observed from Shang et al. [80], even for a synchronized

(S, T ) policy, the system-wide cost expressions are too complex to be used

for further performance bound analysis. In this work, under any given mod-

ified echelon (r,Q) policy, we provide an easy-to-compute upper bound on

the system-wide cost, which is amenable for performance bound analysis.

Although most of the heuristic policies proposed in the literature make
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intuitive sense, it is still unclear how much the gap is between a heuristic

solution and an optimal one. Roundy [76] shows that for the OWMR model

with deterministic constant demands, the performance gap between an op-

timal power-of-two policy and the optimal policy is guaranteed to be within

2%. Other works that analyze performance bounds for deterministic OWMR

models include Chen [17], Chan et al. [15] and Levi et al. [62]. Chu and Shen

[22] focus on power-of-two ordering policies for a periodic-review distribution

inventory system with target service levels under demand uncertainty. The

authors show that the proposed heuristic is guaranteed to be 1.26-optimal,

compared with the optimal power-of-two policy. Other than this work, we

are not aware of other works on performance bound analysis of heuristic

policies for a stochastic distribution inventory system.

The paper most closely related to our work is Hu and Yang [47]. The

authors propose a heuristic policy in the class of MERQS policies for a

continuous-review serial inventory system with Poisson demand arrivals. Un-

der their heuristic, the replenishment to the next downstream stage is based

on the echelon inventory position of the current stage. If the echelon inven-

tory position is less than a specified level, a shipment is sent to the next

downstream to raise its echelon inventory position as close as possible to the

order-up-to level. In their analysis, they introduce the definitions of cycles

and regular (irregular) shipment periods for each stage. Under their MERQS

heuristic for a serial system, the number of shipment periods within one cycle

must be an integer. That is, the beginning of one cycle is also the beginning

of a shipment period, and the end of this cycle is also the end of the same

or another shipment period. This implies that any shipment period asso-

ciated with a cycle cannot exceed the range of this cycle. However, in an

OWMR distribution system, following their definitions, one shipment period

of a retailer may exceed a cycle. That is, at the beginning of one cycle, a
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shipment period belonging to the last cycle might not have been completed,

and the last shipment period associated with this cycle may end in one of the

subsequent cycles. In addition, as their MERQS heuristic is developed for

a serial system, the problem of rationing limited inventory among retailers

does not emerge.

In the current work, motivated by MERQS, we develop a class of modified

echelon (r,Q) policy for distribution systems (referred to as MERQD). To

tackle the aforementioned emerging problems for a distribution system, we

treat all retailers as a whole stage, based on which we define replenishment

and depletion cycles with respect to the warehouse. Moreover, we also intro-

duce the definition of shipment interval and categorize each shipment interval

into two types: irregular and regular. Based on the inventory position at the

beginning of an irregular interval, we further categorize irregular shipments

into two types: types I and II. Those definitions are specifically introduced

for the distribution system. Unlike counting the number of irregular ship-

ment periods in MERQS for the series system, we focus only on the number

of type II irregular shipments within each depletion cycle. Unlike most meth-

ods in the literature, we do not compute the exact system-wide cost; instead,

we provide an upper bound on the system-wide cost. Compared with the

various complicated exact-cost expressions in the literature, the advantage

of this cost upper bound is that it is ready for further performance guarantee

analysis.

3.3 Model

We formally set up the model and introduce key assumptions. We also review

a lower bound and some of its properties established by Chen and Zheng [19],

which we use in our subsequent analysis.
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3.3.1 Notation and Formulation

We consider a firm that manages a two-echelon distribution inventory system

consisting of one warehouse and N retailers (hereafter the OWMR model).

For notation convenience, we use Retailer i (i = 1, 2, . . . , N) to denote a

specific retailer, and Installation i (i = 0, 1, . . . , N) to denote a specific in-

stallation, which can be either the warehouse i = 0 or a specific Retailer i.

Retailers are replenished from the warehouse, which in turn is replenished

from an outside supplier with unlimited stock. Retailer i faces a stochas-

tic demand following a Poisson process with stationary rate λi. Demands

among retailers are assumed to be independent. For Installation i, we de-

note by Di(t, t+ τ ] the total demand of Installation i over the time interval

(t, t + τ ]. Specifically, for the warehouse, D0(t, t + τ ] =
∑N

i=1Di(t, t + τ ]

represents the total demand of all retailers over the time interval (t, t + τ ].

Let λ0 ≡
∑N

i=1 λi. There is a constant lead time Li > 0 for Installation i. In

other words, any shipment sent out to Installation i at time t will be received

by Installation i at time t+Li. Each shipment to Installation i incurs a fixed

cost Ki. Without loss of generality, we assume that the variable ordering cost

is zero. Let hi > 0 be the echelon holding cost rate at Installation i. When-

ever Retailer i runs out of stock, the unmet demand is fully backlogged with

a backlog cost rate pi > 0. The firm’s objective is to determine a shipment

policy that minimizes the long-run average system-wide cost.

As mentioned earlier, we apply a lower bound that has been established

in the literature. To proceed, we first review some commonly used concepts.

The echelon inventory at Installation i is the inventory on hand at Instal-

lation i plus the inventories at or in transit to all its downstream stages.

(Note that for a retailer, the echelon inventory is merely its on-hand inven-

tory.) The echelon inventory level at a retailer is the echelon inventory at

that retailer minus the number of customers back-ordered at the retailer.
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The echelon inventory level at the warehouse is the echelon inventory at the

warehouse minus the total number of customers back-ordered at all retailers.

The echelon inventory position at Installation i is the sum of the echelon

inventory level at Installation i and the inventories in transit to Installation

i. For Installation i, define the following inventory variables at time t:

Ii(t) =echelon inventory at Installation i;

ILi(t) =echelon inventory level at Installation i;

IP−i (t) =echelon inventory position before a shipment is sent to

Installation i at time t;

IPi(t) =echelon inventory position after a shipment is sent to

Installation i at time t;

qi(t) =shipping quantity to Installation i;

Bi(t) =backorder inventory level at Installation i, and B0(t) =
N∑
i=1

Bi(t);

OIi(t) =on-hand inventory at Installation i before a shipment is sent to

its successor at time t.

The system dynamics are expressed as follows:

Ii(t) = ILi(t) +Bi(t),

ILi(t+ Li) = IPi(t)−Di(t, t+ Li],

N∑
i=1

IP−i (t) = IL0(t)−OI0(t), (3.1)

IPi(t) = IP−i (t) + qi(t), (3.2)

where i = 0, 1, . . . , N . The first equation follows from the definition. The

second equation follows because the inventory position of Installation i at
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time t can be decomposed into two components: the echelon inventory level

at Installation i at time t+Li and the total demand over (t, t+Li]. The third

equation follows because the echelon inventory level at the warehouse is the

sum of the on-hand inventory at the warehouse and inventory positions at

all retailers before any replenishment is sent. The last equation captures the

dynamics of inventory positions.

Several remarks are in place. First, at any time t, the shipping quan-

tity to Installation qi(t) in (3.2) is a decision variable, which in turn can

be substituted by the inventory position IPi(t) as an alternative decision

variable. Second, the shipping quantity qi(t) to Retailer i, i = 1, 2, . . . , N ,

should be non-negative, i.e., qi(t) ≥ 0, and the sum of shipping quantities

to retailers should be capped by the on-hand inventory at the warehouse,

i.e.,
∑N

i=1 qi(t) ≤ OI0(t). Third, equations (3.1) and (3.2) jointly imply con-

straints
∑N

i=1 IPi(t) ≤ IL0(t) and IP−i (t) ≤ IPi(t), for any i = 0, 1, 2, . . . , N .

There are three cost components: the fixed setup cost (for each shipment),

inventory holding cost and backlog cost. For Installation i at time t, the fixed

setup cost Kiδ(qi(t) > 0) = Kiδ(IPi(t) > IP−i (t)) is incurred, where δ(·) is

an indicator function. The system-wide inventory holding and backlog cost

rate at time t can be computed as follows:

h0I0(t) +
N∑
i=1

[hiIi(t) + piBi(t)]

=h0[IL0(t) +
N∑
i=1

Bi(t)] +
N∑
i=1

[hiIi(t) + piBi(t)]

=h0IL0(t) +
N∑
i=1

[hiIi(t) + (pi + h0)Bi(t)]. (3.3)

The original problem with the total controllable long-run average cost can
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thus be formulated as follows:

(B) : C∗B ≡ min
{IPi(t)}

lim
T→∞

1

T
E
[ ∫ T

t=0

N∑
i=0

Kiδ(IPi(t) > IP−i (t)) + h0IL0(t)

+
N∑
i=1

[hiIi(t) + (pi + h0)Bi(t)]dt
]

s.t. IP−i (t) ≤ IPi(t), i = 0, 1, . . . , N ;
N∑
i=1

IPi(t) ≤ IL0(t).

Because the optimal policy of such a system, even if it exists, must be ex-

tremely complicated, we focus on a class of modified echelon (r,Q) policies

as follows.

Definition 3.3.1 (Modified Echelon (r,Q) Policy). The upstream in-

stallation ships to a downstream installation on the basis of its observation

of the echelon inventory position at the downstream installation. In par-

ticular, if the echelon inventory position at Installation i is at or below ri

and the upstream has positive on-hand inventory, then a shipment is sent to

Installation i to raise its echelon inventory position as close as possible to

ri +Qi.

A critical issue in distribution systems is the allocation policy in the case

of shortages at the warehouse. Under a modified echelon (r,Q) policy, the

allocation policy is consistent with the first-come-first-served rule, i.e., the

sequence of the actual shipments to retailers is consistent with that of the

retailers’ inventory positions reaching their reorder points. In particular,

once Retailer i’s inventory position is at or below the reorder point ri, the

warehouse must use the on-hand inventory to raise Retailer i’s inventory

position as close as possible to the order-up-to level ri + Qi. Therefore,

it would never occur that on one hand the warehouse has some on-hand

inventory, but on the other hand it keeps Retailer i’s inventory position

below ri. Because the external supplier has ample inventory, a modified
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echelon (r,Q) policy at the warehouse is in fact a standard echelon (r,Q)

policy with parameters (r0, Q0), whereas due to the possible shortage at the

warehouse, the modified echelon (r,Q) policy at retailers behaves differently

from the standard (r,Q) policy.

3.3.2 Lower Bound for OWMR Model

We adopt the so-called induced-penalty bound on the optimal system-wide

cost C∗B, which was established by Chen and Zheng [19]. The authors de-

compose the stock (each unit) at Retailer i into two components: a common

component 0 and a retailer-specific component i. A lower bound of the

original system can then be constructed by assuming that the components

can be replenished and sold independently. In this sense, each component

corresponds to an independent subsystem.

For i = 1, 2, . . . , N , define

Gi(y) = E[hi(y −Di(t, t+ Li])
+ + (h0 + pi)(y −Di(t, t+ Li])

−]. (3.4)

Note that Gi(·) is convex. Consider a single-stage system with a setup cost

Ki, a cost-rate function Gi(·), and a Poisson demand process. Because Gi(·)

is convex, the (r,Q) policy is optimal for such a system. Let (r∗i , Q
∗
i ) be the

optimal (r,Q) policy and Ci the minimum cost. Define

Gi
i(y) =


Ci if y ≤ r∗i ,

Gi(y) otherwise,

and

G0
i (y) = Gi(y)−Gi

i(y) =


Gi(y)− Ci if y ≤ r∗i ,

0 otherwise.

Here G0
i (·) represents an induced-penalty cost charged to the warehouse,

49



which may be interpreted as the additional cost beyond the absolute mini-

mum at Retailer i due to the warehouse’s inability to raise IPi above r∗i .

The “system” of component i = 1, 2, . . . , N is a single-stage system with

a setup cost Ki and a loss rate function Gi
i(·), and thus the optimal cost of

component i, denoted as C∗i , can be easily computed. Zheng [97] studies a

continuous-review, single-stage inventory model with a constant lead time

and a fixed setup cost; see Appendix D. Let L be the shipment lead time

and G(y) denote the expected single-stage cost rate incurring at time t+ L,

when the inventory position equals y at time t. They impose the follow-

ing regularity assumption, and the optimal (r,Q) policy can be efficiently

computed.

Assumption 3.3.1 (Regularity). (i) G(y) is a convex function and

limy→±∞G(y) =∞. (ii) There exist a > 0 and b < 0, such that

limy→+∞G
′(y) = a and limy→−∞G

′(y) = b.

The “system" of component 0 is a special OWMR model where only the

warehouse has a setup cost K0 and the loss rate functions at retailers are the

induced-penalty cost functions G0
i (·). Define

R(y) ≡ h0y + min
yi:

∑N
i=1 yi≤y

N∑
i=1

G0
i (yi), (3.5)

G0(z) ≡ E[R(z −D0(t− L0, t])], (3.6)

C0(r0, Q0) ≡
λ0K0 +

∫ r0+Q0

r0
G0(y)dy

Q0

. (3.7)

The minimization in (3.5) is effectively a free inventory position re-balance,

which is called a balancing assumption in Federgruen and Zipkin [29, 30, 31].

Therefore, given IL0(t) = y, the expected holding and backlogging costs

of component 0 at time t are at least R(y). Then, a lower bound on the
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minimum cost of component 0 can be expressed as (3.7).1 This lower bound,

denoted as C∗0 , can be easily computed; see also Zheng [97]. Specifically,

let (r∗0, Q
∗
0) = arg min(r0,Q0) C0(r0, Q0). Because G0(·) satisfies Assumption

3.3.1, by Theorem 1 in Zheng [97], C∗0 can be rewritten as

C∗0 = min
(r0,Q0)

C0(r0, Q0) = min
(r0,Q0)

λ0K0 +
∫ r0+Q0

r0
G0(y)dy

Q0

= G0(r∗0) = G0(r∗0 +Q∗0). (3.8)

Lemma 3.1 (Chen and Zheng [19]). A lower bound for the original sys-

tem is C∗ =
∑N

i=0 C
∗
i .

Before ending this section, we must point out that C∗0 may take negative

values. To see this, note that the holding cost of this single-stage system

of component 0 is assessed on the echelon inventory level of the warehouse,

other than in a traditional way, assessed on the on-hand inventory; see (3.5)-

(3.7). In some extreme cases, e.g., when K0 and Li’s are quite small, C∗0 can

be negative. The following assumption provides a sufficient condition for C∗0

to stay positive.

Assumption 3.3.2. A ≡ h0

∑N
i=1(λiLi − C∗

i

h0+pi
) +

√
2λ0K0h0p

h0+p
> 0, where

p = mini=1,2,...,N pi.

Lemma 3.2. Assumption 3.3.2 ⇒ C∗0 > 0.

The term A in Assumption 3.3.2 is the deterministic counterpart of C∗0 in

an inventory system with fluid customer arrivals. Based on Jensen’s inequal-

ity, it is well known that the inventory costs calculated in the deterministic

model underestimate the actual inventory costs with stochastic customer

arrivals. Therefore, the optimal cost of the deterministic system provides a
1We adopt the convention that discrete units of inventories can be approximated by

continuous variables. Such an approximation is widely used in the inventory literature
(see Zheng [97] for more discussion).
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lower bound on that of the stochastic inventory system with the same system

primitives.

3.4 Analysis

Consider that the OWMR system operates under an arbitrarily given modi-

fied echelon (r,Q) policy. Because the size of the shipment to each retailer is

physically constrained by the on-hand inventory of the warehouse, Retailer i

may not always be able to raise its echelon inventory position to the desired

level, ri + Qi. In that case, the warehouse will feed Retailer i as much as

possible. The size of a shipment to Retailer i can be larger or smaller than

Qi. For instance, if the warehouse does not have enough on-hand inventory

when Retailer i reaches the reorder point, the shipment can be smaller than

Qi; however, if the warehouse has run out of stock for a while, the size of the

shipment sent to Retailer i after the warehouse is back in stock can be larger

than Qi.

Let C(r,Q) denote the long-run average system-wide cost under the mod-

ified echelon (r,Q) policy. As such a policy is a feasible solution to Problem

(B), C(r,Q) provides a cost upper bound on C∗B.

Observation 3.4.1. For any modified echelon (r,Q) policy, C∗B ≤ C(r,Q).

3.4.1 An Upper Bound on C(r,Q)

Given a modified echelon (r,Q) policy, it is difficult to calculate its long-run

average system-wide cost. To overcome this, we propose a novel approach

to obtain an upper bound on C(r,Q). First, we adopt the following cost-

accounting scheme (see also Chen and Zheng 19).

Definition 3.4.1 (Cost Accounting Scheme). At time t, we charge

the inventory holding cost of the warehouse incurred at time t + L0, and
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charge the inventory holding and backlog cost of Retailer i incurred at time

t + L0 + Li. In addition, we charge the inventory cost of Retailer i in the

form of (3.4) assessed on its inventory position, and charge the warehouse’s

inventory cost assessed on its echelon inventory level.

As such a cost accounting scheme only shifts costs across time points, the

long-run average inventory holding and backlog costs are not affected. The

rationale behind it is that an order placed by the warehouse at time t does

not affect the inventory holding of the warehouse until time t+L0, and does

not affect the inventory holding and backlog costs of Retailer i until time

t+ L0 + Li or later.

Replenishment and Depletion Cycles.

In the subsequent analysis, for notation convenience, we use Installation I

to denote the union set of all retailers. A shipment is said to be shipped to

Installation I, if it is sent from the warehouse to one of the retailers.

Definition 3.4.2 (Replenishment Cycle and Depletion Cycle). For

j ∈ N, we call [T j0 , T
j+1
0 ) the jth replenishment cycle, where T j0 is the time

epoch of the 1st unit, contained in the jth order of the warehouse, being

sent to the warehouse. Similarly, we call [T jI , T
j+1
I ) the jth depletion cycle,

where T jI is the time epoch of the 1st unit, contained in the jth order of the

warehouse, being sent to Installation I, i.e., one of the retailers.

Since the depletion cycle is our main focus due to its complexity and is

frequently mentioned in the subsequent analysis, we simply use “cycle” to

denote a depletion cycle, unless otherwise specified. Note that a depletion

cycle [T jI , T
j+1
I ) may be an empty set. In that case, all the units contained in

the jth order of the warehouse are shipped to a retailer together with one or

multiple units in the (j + 1)th order of the warehouse. Our analysis focuses

on non-empty cycles because retailers incur no costs for empty cycles.
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Regular and Irregular Shipments.

Over any non-empty cycle [T jI , T
j+1
I ), the jth order of the warehouse is

shipped to retailers in one or multiple, say M ∈ N, shipments in total.

Of these M shipments, suppose Mi ∈ N shipments are sent to Retailer i.

Then,
∑N

i=1 Mi = M . Let T j,mi be the time of the mth shipment sent to

Retailer i over cycle [T jI , T
j+1
I ), where m = 1, 2, . . . ,Mi. By definition, we

have T jI ≤ T j,1i ≤ · · · ≤ T j,Mi

i < T j+1
I for any i. Define T j,Mi+1

i ≡ T j+1,1
i .

We call [T j,mi , T j,m+1
i ) the mth shipment interval of Retailer i over the cycle

[T jI , T
j+1
I ). Note that for the case with Mi = 0, i.e., when no shipment is

sent to Retailer i, we define T j,1i ≡ T j+1,1
i .

It is easy to see that for m = 1, . . . ,Mi − 1, the shipment interval

[T j,mi , T j,m+1
i ) resides within the cycle [T jI , T

j+1
I ). However, the last ship-

ment interval incurred in this cycle, [T j,Mi

i , T j,Mi+1
i ), may exceed the cy-

cle. Actually, the beginning of this interval must be within this cycle, i.e.,

T j,Mi

i ≤ T j+1
I , which is the reason why we associate this interval with the

cycle [T jI , T
j+1
I ). However, the end of this shipment interval, T j,Mi+1

i , may be

outside the cycle. This occurs when after the shipment at T j,Mi

i , no shipment

is sent to Retailer i over [T j,Mi

i , T j+1
I ) and the next shipment to Retailer i

occurs at T j+1,1
i , which is strictly later than T j+1

I . This obviously differs from

the notion of the shipment period defined for the serial system by Hu and

Yang [47]. There in the series system, the cycle of the upstream stage starts

at the beginning of one shipment period of the downstream stage, and ends

at the end of another shipment period, i.e., the shipment periods in one cycle

cannot exceed the range of its associated cycle.

Depending on the retailer’s inventory positions at the beginning and end

of a shipment interval, we categorize shipments to retailers and their associ-

ated shipment intervals into the following three types.

Definition 3.4.3 (Regular and Irregular Shipment (Interval)).
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For a shipment interval [T j,mi , T j,m+1
i ), if IPi(T j,mi ) = ri+Qi and IP−i (T j,m+1

i ) =

ri, we call it a regular shipment interval of Retailer i; otherwise, we call

it an irregular shipment interval. In particular, if IPi(T j,mi ) = ri + Qi

and IP−i (T j,m+1
i ) < ri, we call it a type I irregular shipment interval; if

IPi(T
j,m
i ) < ri + Qi, we call it a type II irregular shipment interval. The

shipment associated with a regular (type I or II irregular) shipment interval

is called a regular (type I or II irregular) shipment.

Note that whether a shipment interval is regular or not depends on the

retailer’s inventory positions at the beginning and end of this shipment in-

terval. Instead, the type of irregular shipment interval depends only on the

inventory position at the beginning of this shipment interval.

To better illustrate this, we plot in Figure 3.1 one scenario of two retailers’

inventory positions over the cycle [T jI , T
j+1
I ). As shown in Figure 3.1, at the

beginning of the cycle [T jI , T
j+1
I ), the first shipment over this cycle is sent to

Retailer 1 at time epoch T jI = T j,11 . The first shipment to Retailer 2 over

this cycle occurs at time epoch T j,12 , and the interval [T jI , T
j,1
2 ) belongs to

the last shipment interval associated with the previous cycle. At time epoch

T j,Mi
2 , the inventory position of Retailer 2 drops to r2 and thus a shipment

from the warehouse is sent to Retailer 2. However, because the warehouse

does not have enough on-hand inventory, Retailer 2’s inventory position after

this shipment is still less than r2 + Q2. Therefore, the associated shipment

interval [T j,Mi
2 , T j+1,1

2 ) is a type II irregular shipment interval. Moreover, at

the first time after T j,Mi
1 , when Retailer 1’s inventory position drops to r1,

the warehouse has used up all its on-hand inventory; therefore, Retailer 1’s

inventory position cannot be raised up to r1 + Q1 until time epoch T j+1,1
1 ,

when the warehouse has enough on-hand inventory due to the arrival of

the (j + 1)th order of the warehouse. Therefore, the last shipment interval

[T j,Mi
1 , T j+1,1

1 ) of Retailer 1 over this cycle is a type I irregular shipment
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interval.

A key observation is that for any Retailer i, the first Mi − 1 (possibly

zero) shipments in any cycle with Mi shipments must be regular. This can

be seen by the definition of the modified echelon (r,Q) policy. Imagine two

shipments to Retailer i are associated with the same order of the warehouse

and that the earlier one does not raise Retailer i’s inventory position to the

desired level of ri + Qi. Then, units in the later shipment should be moved

to the earlier shipment as much as possible, by the way of how the modified

echelon (r,Q) policy works. As a result, either the earlier one becomes a

regular shipment or there is only one shipment in that cycle. Therefore,

if there are a number of Mi > 1 shipments in a cycle, the first Mi − 1

(possibly zero) shipments must be regular. However, the last (possibly the

only) shipment may not be regular for two possible reasons. First, at the

beginning of the last shipment interval, the warehouse may not have enough

on-hand inventory to raise Retailer i’s inventory position to ri + Qi, i.e.,

IPi(T
j,Mi

i ) < ri + Qi. Second, at the end of the last shipment interval, the

warehouse may be out of stock and thus Retailer i’s inventory position may

drop below ri, i.e., IP−i (T j,Mi+1
i ) < ri. The two reasons are not exclusive. It

is possible that IPi(T j,Mi

i ) < ri +Qi and IP−i (T j,Mi+1
i ) < ri; see Retailer 2 in

Figure 3.1.

The following lemma shows that the frequency of both irregular ship-

ments for each retailer and type II irregular shipments for all retailers can

be bounded by that of cycle.

Lemma 3.3 (Irregular Shipment Frequency). (i) For any retailer,

there exists at most one irregular shipment interval in each cycle, re-

gardless of whether the cycle is empty or not.

(ii) Across all retailers, there exists at most one type II irregular shipment

interval in each cycle.
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Figure 3.1: Illustration of two retailers’ inventory positions over the cycle
[T jI , T

j+1
I ).

Cost Assessment in Cycles.

Remark 3.1 (Cost in regular and Irregular Shipment Intervals).

We make the following cost assessment.

(i) The expected cost rate of the fixed, inventory holding and backlog costs

at Retailer i in a regular shipment interval is Ci(ri, Qi) = (1/Qi)[λiKi+∫ ri+Qi

ri
Gi(y)dy], where Gi(y) is defined in (3.4). The cost rate is the

same as that in the single-stage problem with an outside supplier of

unlimited supply (Zheng 97).

(ii) For any time t in a non-empty type I irregular shipment interval of

Retailer i, the inventory position first drops from ri +Qi to ri and then

below ri. In the former subinterval, the expected cost rate is Ci(ri, Qi),

whereas in the latter, the expected inventory holding and backlog costs

accrue at a rate equal to Gi(IPi(t)).

(iii) For any time t in a non-empty type II irregular shipment interval of

Retailer i, the expected inventory holding and backlog costs accrue at a
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rate equal to Gi(IPi(t)); in addition, a fixed setup cost, Ki, is incurred

for the irregular shipment.

Remark 3.1 states that the total costs of the system consist of four parts:

(i) costs in regular shipment intervals, (ii) costs in type I irregular shipment

intervals, (iii) inventory and backlog costs in type II irregular shipment inter-

vals and (iv) setup costs in type II irregular shipment intervals. We provide

cost upper bounds for the first three parts and the last part separately.

Cost Upper Bound.

We first bound the expected cost rate at all retailers, excluding the setup

costs for type II irregular shipment intervals, i.e., the first three types of

costs discussed in Remark 3.1.

Lemma 3.4. For any time t ∈ [T jI , T
j+1
I ) 6= , the expected cost rate at

Retailer i, denoted by Γ̂i(IL0(t)), which excludes the setup costs in type II

irregular shipment intervals, is bounded as follows:

Γ̂i(IL0(t)) ≤ Γ̄i(IL0(t)) ≡



max{Gi(IL0(t)−
∑
j 6=i

rj +Qj), Gi(wi), Ci(ri, Qi)}

if IL0(t)−
∑
j 6=i

rj +Qj ≤ ri,

max{Gi(wi), Ci(ri, Qi)} otherwise,

where wi ≡ arg maxri<z≤ri+Qi
{Gi(z)}.

As an immediate result of Lemma 3.4, we have the following corollary.

Corollary 3.2. For any time t ∈ [T jI , T
j+1
I ) 6= , the expected cost rate at all

retailers, with the setup costs of type II irregular shipments excluded, denoted

by Γ̂I(IL0(t)), is bounded as follows:

Γ̂I(IL0(t)) ≤ Γ̄I(IL0(t)) ≡
N∑
i=1

Γ̄i(IL0(t)). (3.9)
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Although the upper bound in Corollary 3.2 is provided in terms of IL0(t),

the system-wide cost can be bounded in terms of IP0(t), based on the relation-

ship IL0(t+ L0) = IP0(t)−D0(t, t+ L0]. Because the warehouse replenishes

from a supplier with an unlimited supply, the inventory position IP0(t) at

the warehouse in the steady state is uniformly distributed (see Zheng 97),

which facilitates our analysis.

We now bound the setup costs associated with type II irregular shipments.

By Lemma 3.3(ii), the frequency of incurring irregular shipment intervals is

bounded by the frequency of depletion cycles. The following lemma charac-

terizes the expected long-run average length for both the replenishment and

depletion cycles.

Lemma 3.5 (Cycle Length). Under any modified echelon (r,Q) policy,

the long-run average expected cycle length for both replenishment and de-

pletion cycles is Q0/λ0, i.e., limj→∞ E[(T j+1
0 − T 1

0 )]/j = limj→∞ E[(T j+1
I −

T 1
I )]/j = Q0/λ0.

Remark 3.3. Define

K = max
i=1,...,N

{Ki}.

By Lemma 3.3(ii), over any cycle [T jI , T
j+1
I ) 6= , the setup cost for type II

irregular shipment is incurred once at most and is no more than K. Conse-

quently, the corresponding setup costs for type II irregular shipments accrue

at a rate that is no more than K/(T j+1
I − T jI ). It follows from Lemma 3.5

that the long-run average setup cost for type II irregular shipments has an

upper bound λ0K/Q0.

For notation convenience, we define Ĉi(ri, Qi) ≡ Ci(ri, Qi), for i = 1, 2, . . . , N .
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Let D0 denote the total demand over (0, L0]. Moreover, we define

Ĝi(y) ≡ Γ̄i(y)− Ĉi(ri, Qi), (3.10)

Λ0(y) ≡ E[h0(y −D0) +
N∑
i=1

Ĝi(y −D0)], (3.11)

Ĉ0(r0, Q0) ≡ 1

Q0

[
λ0K0 +

∫ r0+Q0

r0

Λ0(y)dy
]
. (3.12)

Combining all the cost terms of all the installations, we are ready to

present an upper bound on C(r,Q).

Theorem 3.4 (An Upper Bound). For any given modified echelon (r,Q)

policy, the long-run average system-wide cost has an upper bound: C(r,Q) ≤∑N
i=0 Ĉi(ri, Qi) + λ0K/Q0.

By (3.9)-(3.12),
∑N

i=0 Ĉi(ri, Qi) is an upper bound on the expected ware-

house cost and all retailers’ costs, with the setup costs of type II irregular

shipments excluded. By Remark 3.3, λ0K/Q0 is an upper bound on the

long-run average setup cost for type II irregular shipments.

3.4.2 Heuristic Policy

We propose the following heuristic modified echelon (r,Q) policy. In this

heuristic policy, for Retailer i, we select (ri, Qi) = (r∗i , Q
∗
i ), which is the

optimal policy for a single-stage system with setup cost Ki and loss rate

function Gi(·) as defined in (3.4). With this selection, we have Ĉi(ri, Qi) =

Ci(r
∗
i , Q

∗
i ) = C∗i and

C∗B ≤ C(r,Q)|(ri,Qi)=(r∗i ,Q
∗
i ) ≤

N∑
i=1

C∗i + Ĉ0(r0, Q0) +
λ0K

Q0

. (3.13)
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Plugging (3.12) into (3.13), we have

C(r,Q)|(ri,Qi)=(r∗i ,Q
∗
i ) ≤

N∑
i=1

C∗i +
1

Q0

[
λ0K0+

∫ r0+Q0

r0

Λ0(y)dy
]
+
λ0K

Q0

. (3.14)

We can further tighten the upper bound in (3.14) by minimizing r0 and

Q0. Specifically, this can be achieved by solving the following optimization

problem:

min
r0,Q0

C̃0(r0, Q0) ≡ min
r0,Q0

1

Q0

[
λ0(K0 +K) +

∫ r0+Q0

r0

Λ0(y)dy
]
. (3.15)

Note that Γ̄i(y) (see Lemma 3.4) may not be convex for any given ri and Qi

(i = 1, 2, . . . , N), but it is indeed so for (ri, Qi) = (r∗i , Q
∗
i ). Consequently,

with (ri, Qi) = (r∗i , Q
∗
i ) for all i, Ĝi(y) in (3.10) and hence Λ0(y) in (3.11)

are also convex functions.

Lemma 3.6. Λ0(y) satisfies Assumption 3.3.1 with a = h0 and b = −
∑N

i=1(pi+

h0) + h0. In addition, Ĉ0(r0, Q0) is a jointly convex function of r0 and Q0,

and hence so is C̃0(r0, Q0).

Problem (3.15) is a single-stage problem with a fixed setup cost equal to

K0 +K, and its objective function C̃0(r0, Q0) is jointly convex in r0 and Q0.

Therefore, the optimal solution can be efficiently computed (see Federgruen

and Zheng 28). Define (r̃∗0, Q̃
∗
0) ≡ arg minr0,Q0 C̃0(r0, Q0). We construct a

heuristic modified echelon (r,Q) policy as follows:

(r̂, Q̂) = (r̂0, Q̂0, r̂1, Q̂1, . . . , r̂N , Q̂N) = (r̃∗0, Q̃
∗
0, r
∗
1, Q

∗
1, . . . , r

∗
N , Q

∗
N).

(MERQD)

As Λ0(·) satisfies Assumption 3.3.1, we have by Theorem 1 in Zheng [97] that

C̃∗0 ≡ C̃0(r̃∗0, Q̃
∗
0) = Λ0(r̃∗0). A tighter upper bound on the system-wide cost
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can be expressed as follows:

C∗B ≤ C(r̂, Q̂) ≡ C(r,Q)|(r,Q)=(r̂,Q̂) ≤
N∑
i=1

C∗i + C̃∗0 . (3.16)

3.4.3 Performance Guarantee and Asymptotic Optimal-

ity

Recall that the lower bound of the original system can be expressed as

C∗ =
∑N

i=0C
∗
i . Compared with the upper bound in (3.16), we can derive

guaranteed bounds on the effectiveness of our heuristic policy. For notation

convenience, let (r̂∗0, Q̂
∗
0) = arg minr0,Q0 Ĉ0(r0, Q0) and Ĉ∗0 = Ĉ0(r̂∗0, Q̂

∗
0).

Theorem 3.5 (Performance Bounds for General Cases). (i) The

modified echelon (r̂, Q̂) policy in (MERQD) is at least

1+(C̃∗0 −C∗0)/(
∑N

i=1C
∗
i +C∗0)-optimal, i.e.,

∑N
i=1 C

∗
i +C̃∗

0∑N
i=1 C

∗
i +C∗

0

-optimal. In ad-

dition, if C∗0 > 0, the modified echelon (r̂, Q̂) policy in (MERQD) is at

least C̃∗0/C∗0 -optimal.

(ii) Assume Assumption 3.3.2 holds. The modified echelon (r̂, Q̂) policy in

(MERQD) is at least max{
√

λ0
2β1β2λm

+ 1
4

+ 1
2
, 1
β2
}-optimal, where m ∈

arg maxi=1,...,N{Ki}, β1 ≡ Q̂∗0/Q
∗
m and β2 ≡ C∗0/Ĉ

∗
0 ≤ 1.2

Theorem 3.5(i) directly follows from comparing the induced penalty lower

bound and the upper bound established in (3.16). Theorem 3.5(ii) provides

a less tight performance bound that depends on the order size ratio β1 ≡

Q̂∗0/Q
∗
m, as well as the cost ratio β2 ≡ C∗0/Ĉ

∗
0 . Figure 3.2 displays the contour

plot of the performance bound as a function of β1 and β2. The identified

heuristic performs well when the two ratios are large. Denote f0 ≡ λ0/Q̂
∗
0

2In addition, if (β2
2 − 1)(β1λm) + β2λ0 ≥ 0, the heuristic policy in (MERQD) can be

alternatively shown to be at least 1 + λ0/(2(β1β2λm +
√

(β2
2 − 1)(β1λm)2 + β1β2λmλ0))-

optimal; see the proof of Theorem 3.5. Numerical results show that the bound in Theorem
3.5(ii) tends to perform better but not always.
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and fi ≡ λi/Q
∗
i for i = 1, 2, . . . , N . Note that fi represents the replenishment

frequency of Installation i = 0, 1, . . . , N under our heuristic assuming each

installation’s replenishment can always be fulfilled. Then, the performance

guarantee in Theorem 3.5(ii) can be rewritten as max{1+
√

β0
2β2

+ 1
4
− 1

2
, 1
β2
},

where β0 ≡ f0/fm is the ratio of two replenishment frequencies for single-

stage systems. This implies that the theoretical performance bound can be

expressed by a replenishment frequency ratio (β0) and a cost ratio (β2) for

single-stage systems, all of which can be efficiently computed.

Corollary 3.6. If 2(1/β2−1) ≥ λ0/(β1λm), then the modified echelon (r̂, Q̂)

policy in (MERQD) is at least 1/β2-optimal.

Corollary 3.6 says that under some condition, the performance bound

may depend only on β2, which is the warehouse’s cost ratio between the

induced penalty cost and the incurred cost under our heuristic. This can

also be observed in Figure 3.2. That is, when β1 is relatively large such

that 2(1/β2 − 1) ≥ λ0/(β1λm) holds, there exists a performance bound that

becomes independent of β1; see the contour lines of the performance bound

in Figure 3.2 become flat for large values of β1.

For the case with identical retailers, we can derive a sharper performance

bound that does not explicitly depend on the arrival rates.

Theorem 3.7 (Performance Bounds for Identical Retailers).

Supposes all retailers are identical. If Assumption 3.3.2 holds, the modi-

fied echelon (r̂, Q̂) policy in (MERQD) is at least max{
√

1
2β1β2

+ 1
4

+ 1
2
, 1
β2
}-

optimal, where β1 ≡ Q̂∗0/Q
∗
i is the same for any retailer i.

The following theorem further demonstrates the asymptotic optimality of

our heuristic if we take the dominant relationships of cost primitives to the

extreme.
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Figure 3.2: Performance bound in Theorem 3.5(ii) as a function of β1 and
β2.

Theorem 3.8. The modified echelon (r̂, Q̂) policy in (MERQD) is asymp-

totically optimal if for any m ∈ arg maxi=1,...,N{Ki}, one of the following

conditions holds: (i) Km > 0 and K0/Km → ∞. (ii) h0/hm → 0. (iii)

h0/pm → 0.

Theorem 3.8 shows the asymptotic optimality of the heuristic based on

the relationship between some system primitives. We make the following

remarks on the relationships between system primitives in practical settings,

indicating when the heuristic policy is more likely to have a good perfor-

mance.

Remark 3.9 (Setup Costs). In an OWMR model where all retailers re-

plenish from a warehouse, the fixed setup cost incurred at the warehouse tends

to be much higher than that at each retailer.

In a distribution system, there are usually larger economies of scales at

the warehouse than at retailers. For instance, shipments to the warehouse

are usually sent by sea or air cargo from suppliers who may be located far

away from the warehouse, such as overseas. However, shipments from the

warehouse to nearby retailers are usually sent by truck or van. As a result,
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shipments to the warehouse tend to incur a much larger cost than shipments

to retailers.

Remark 3.10 (Holding Costs). The echelon inventory holding cost at

the warehouse tends to be much lower than that at each retailer.

The echelon inventory holding usually includes financing and physical

handing costs. Because the variable ordering cost at the warehouse is smaller

than that at retailers in most cases, the financing cost at the warehouse is

proportionally smaller. The physical handing cost also tends to be smaller at

the warehouse due to its larger economics of scales. The warehouse is usually

located in a suburban area and has a lower out-of-pocket inventory holding

cost rate than a downtown retailer.

Remark 3.11 (Shortage Costs). The inventory shortage cost at each

retailer tends to be much larger than its holding cost. By virtue of Remark

3.10, the echelon inventory holding cost at the warehouse therefore tends to

be even lower than the shortage cost at each retailer.

As shown in Huh et al. [55], the ratio between shortage and holding costs

is quite large and “[a]t a 25% markup, which is quite common in many retail

environments, this ratio is at least 100.” In addition to the direct impact of

profit loss, shortages at retailers can lead to a loss of customer goodwill and

have a long-term negative impact on the retailers’ revenue.

Up till now, under the modified echelon (r,Q) policy, the allocation policy

at the warehouse in case of shortage (i.e., not enough on-hand inventory at

the warehouse to raise multiple retailers’ inventory positions to the desired

levels) is first-come, first-served. However, all the preceding results still hold

for any sequence of serving backlogged retailers if there is more than one.

The reason is as follows. Once Retailer i’s inventory position drops to ri
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and the warehouse has on-hand inventory, the warehouse should use its on-

hand inventory to raise Retailer i’s inventory as close as possible to ri +Qi.

However, if Retailer i’s inventory position drops to ri and the warehouse

has no on-hand inventory, then Retailer i cannot get replenished and its

inventory position will remain ri or further drop below ri. As time goes by,

the inventory positions of other retailers may also drop to their reorder points,

and due to the shortage at the warehouse, their inventory positions cannot

be raised either. Suppose at time t a new shipment with Q0 units arrives at

the warehouse. Let J denote the set of retailers whose inventory positions

are below their reorder points. In the case
∑

i∈J(ri + Qi − IPi(t)) > Q0, all

those Q0 units are immediately sent to retailers. Regardless of the sequence

the retailers in set J are served as long as each retailer’s order is fulfilled as

much as possible, there will be at most one shipment to each retailer and

there is at most one type II irregular shipment across all retailers, which

implies that Lemma 3.3 still holds. In addition, Lemmas 3.4 and 3.5 are

independent of the serving sequence. Therefore, our results are robust to the

service sequence at the warehouse in the event of shortage. This property is

desirable, as the warehouse may want to prioritize serving a retailer who has

a higher backlog penalty cost or a higher expected sales volume.

3.5 Numerical Experiments

We report our numerical study in this section. With a set of comprehensive

numerical experiments, we verify the effectiveness of our heuristic policy

(including the asymptotic optimality demonstrated in Theorem 3.8) and test

its sensitivity to the system parameters. Moreover, we compare our heuristic

policy with the standard echelon (r,Q) policy studied in Chen and Zheng

[20].
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To test the effectiveness of the heuristic, we compare the upper bound

of its system-wide cost, denoted by C̄ (see Theorem 3.4), with the induced-

penalty lower bound of the optimal cost, denoted by C∗ (see Lemma 3.1).

We define the following performance ratio:

δ1 ≡
C̄ − C∗

C∗
× 100%,

which is an upper bound of the effectiveness of our heuristic policy.

To better ascertain the effectiveness of the heuristic policy, we also report

the theoretical performance bounds (see Theorem 3.5 and Footnote 2). We

define the following percentages:

δ2 ≡ max{

√
λ0

2β1β2λm
+

1

4
− 1

2
,

1

β2

− 1} × 100%.

δ3 ≡ 100%×



min{δ2,
λ0

2(β1β2λm +
√

(β2
2 − 1)(β1λm)2 + β1β2λmλ0)

}

if (β2
2 − 1)(β1λm) + β2λ0 ≥ 0,

δ2 otherwise.

It follows from the proof of Theorem 3.5 that δ1 ≤ δ3 ≤ δ2 for each instance.

The performance bounds δ1, δ2 and δ3 all use upper bounds of the system-

wide cost to replace the real cost of the heuristic policy. It is technically

challenging to exactly compute the real cost of the heuristic. To evaluate

the exact performance of the heuristic, we use the Monte Carlo simulation

method and compute the long-run average cost of the inventory systems

under the heuristic policy. We denote by C̃ this real cost obtained by Monte

Carlo simulation. We define the following percentage:

δ4 ≡
C̃ − C∗

C∗
× 100%,
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which is again an upper bound on the performance gap of our heuristic but

is presumably tighter than δ1, δ2 and δ3. The complete test set of primitive

values is given by L0 ∈ {0, 1, 2}, L1 ∈ {0, 1, 2}, K0 ∈ {100, 200, 600}, K1 ∈

{10, 20, 40}, h0 ∈ {0.05, 0.1, 0.2}, h1 ∈ {0.3, 0.5, 1}, p1 ∈ {3, 5, 10} and λ1 ∈

{3, 5, 7}, with other primitives fixed as N = 2, L2 = 1, K2 = 20, h2 = 0.5,

p2 = 5 and λ2 = 5. By virtue of Huh et al. [55], the holding cost parameters

are selected to be much smaller than the shortage costs. All combinations of

these primitives provide 38 = 6561 test instances.

The numerical results are summarized in Table 3.1. The average gap

δ1 between our provable cost upper bound in Theorem 3.4 and the induced

penalty lower bound is about 9%. Table 3.1 shows that the maximum of δ1 in

our test is about 30%, i.e., the modified echelon (r̂, Q̂) policy in (MERQD) is

provably guaranteed to be at least 1.3-optimal for our test instances. More-

over, the average gap δ4 between the real cost and induced penalty lower

bound is about 6%, with the minimum about 1.39% and the maximum about

20.66%. Axsäter et al. [8] and Gallego et al. [38] point out that the “balance”

assumption which is used to derive the induced penalty lower bound may re-

sult in large errors from the optimal cost in some cases. In a numerical study,

Doğru et al. [25] show that the “balance” assumption can indeed result in a

lower bound far way from the optimal cost. This implies that our heuristic

may perform much better than the performance bounds reported in Table

3.1, as the optimal policy is unknown and we benchmark the performance of

our heuristic against the induced penalty lower bound.

δ1 δ2 δ3 δ4

Average (%) 9.19 13.00 12.60 6.11
Standard deviation (%) 4.54 6.75 6.40 3.12

Minimum (%) 2.76 4.06 4.06 1.39
Maximum (%) 29.83 42.95 42.95 20.66

Table 3.1: Overview of performance of modified echelon (r̂, Q̂) policy.
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3.5.1 Sensitivity to System Primitives

We now turn to investigate the impact of system primitives on the perfor-

mance of the heuristic. To better measure the effect, we consider identical

retailers in this subsection. The numerical results are reported in Tables 3.2

and 3.3. Table 3.2 confirms the effectiveness of our heuristic under various h0

and K0. It is observed that both β1 and β2 decrease as h0 decreases or K0 in-

creases, and thus the theoretical performance bound δ2 becomes smaller and

the performance of our heuristic tends to perform better. Specifically, the

heuristic has a close-to-optimal performance when h0 = 0.05 and K0 = 600,

which is consistent with the asymptotic optimality shown in Theorem 3.8.

Table 3.3 demonstrates the effectiveness of the heuristic under various values

of pi and λi. As shown in Table 3.3, as pi increases, both the theoretical

performance bounds and the gap between the real cost and the lower bound

cost decrease, which means the heuristic performs better. It is also observed

that the effectiveness does not seem monotone in λi.
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h0 K0 r∗i Q∗i r∗0 Q∗0 r̂∗0 Q̂∗0 β1 β2 δ1 (%) δ2 (%) δ3 (%) δ4 (%)
L0 = 1, Li = 1, Ki = 10, hi = 1, pi = 5, λi = 3

1 10 1 10 7 13 17 18 1.30 0.58 46.49 75.23 71.78 30.79
50 1 10 4 28 16 29 2.70 0.71 30.64 41.58 41.58 22.35
100 1 10 2 39 15 39 3.70 0.76 24.86 31.94 31.94 18.37
300 1 10 -2 66 13 64 6.30 0.83 17.70 21.07 21.07 13.37
600 1 10 -7 93 11 89 8.90 0.86 14.38 16.47 16.47 10.71

0.5 10 1 10 8 17 18 24 1.70 0.65 31.36 57.33 53.92 20.87
50 1 10 5 38 17 40 3.60 0.77 20.14 29.21 29.21 14.48
100 1 10 4 52 16 53 5.10 0.82 16.17 21.98 21.98 12.36
300 1 10 0 90 14 89 8.80 0.88 11.25 13.96 13.96 8.45
600 1 10 -3 126 12 125 12.40 0.90 9.00 10.65 10.65 6.60

0.2 10 1 10 9 26 19 36 2.60 0.74 18.28 37.78 35.72 10.59
50 1 10 7 57 18 61 5.60 0.84 11.40 18.36 18.36 7.90
100 1 10 6 80 17 83 7.90 0.88 9.06 13.53 13.53 6.58
300 1 10 3 138 15 139 13.60 0.92 6.27 8.38 8.38 4.41
600 1 10 1 194 14 194 19.30 0.94 4.93 6.20 6.20 3.88

0.1 10 1 9 9 37 18 51 4.00 0.81 11.61 24.73 23.58 5.90
50 1 9 7 80 17 87 8.89 0.89 6.96 11.76 11.76 4.03
100 1 9 7 111 17 116 12.33 0.92 5.49 8.59 8.59 3.45
300 1 9 5 192 15 195 21.33 0.95 3.74 5.24 5.24 2.59
600 1 9 3 272 14 273 30.11 0.96 2.93 3.85 3.85 2.35

0.05 10 1 9 10 50 19 71 5.67 0.85 7.78 17.56 17.06 3.36
50 1 9 8 112 18 121 12.33 0.92 4.57 8.29 8.29 2.43
100 1 9 7 157 17 164 17.44 0.94 3.57 6.04 6.04 2.12
300 1 9 6 271 16 275 30.00 0.97 2.41 3.63 3.63 1.76
600 1 9 5 382 15 385 42.44 0.97 1.88 2.64 2.64 1.41

Table 3.2: Comparisons between lower bounds and upper bounds under various h0 and K0.
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pi λi r∗i Q∗i r∗0 Q∗0 r̂∗0 Q̂∗0 β1 β2 δ1 (%) δ2 (%) δ3 (%) δ4 (%)
L0 = 1, Li = 1, K0 = 100, Ki = 10, h0 = 0.1, hi = 1

1 3 -3 11 -10 116 6 118 10.27 0.88 8.45 13.17 13.17 6.05
5 -2 14 -8 149 13 152 10.43 0.88 8.58 13.40 13.40 6.13
10 0 20 1 210 30 216 10.30 0.88 8.48 13.05 13.05 5.97
15 3 25 12 258 49 264 10.08 0.88 8.54 13.07 13.07 6.36

3 3 0 10 3 112 15 117 11.10 0.91 6.27 9.86 9.86 4.20
5 1 13 9 145 23 151 11.08 0.91 6.23 9.75 9.75 4.00
10 5 18 24 205 45 214 11.28 0.91 6.20 9.57 9.57 3.68
15 9 22 41 251 67 261 11.32 0.91 6.15 9.40 9.40 3.78

10 3 2 9 10 111 20 116 12.33 0.92 5.09 8.28 8.28 3.25
5 4 12 17 144 31 150 11.92 0.92 5.23 8.56 8.56 3.20
10 9 17 37 203 56 212 11.94 0.92 5.26 8.54 8.54 3.36
15 14 20 56 249 79 260 12.40 0.92 5.13 8.16 8.16 3.09

20 3 3 9 13 111 22 117 12.33 0.92 4.83 8.19 8.19 2.81
5 5 11 21 143 34 150 11.92 0.92 4.90 8.39 8.33 3.41
10 11 16 41 203 60 212 12.69 0.93 4.86 8.10 8.10 3.06
15 16 20 62 248 85 260 12.40 0.93 4.86 8.06 8.00 2.94

50 3 4 9 15 112 25 117 12.33 0.93 4.51 8.10 8.01 2.46
5 7 11 25 143 37 150 13.09 0.93 4.53 7.97 7.97 2.76
10 13 16 46 203 65 212 12.69 0.93 4.61 8.05 8.05 2.85
15 18 20 68 248 91 259 12.35 0.93 4.56 8.08 7.85 2.75

Table 3.3: Comparisons between lower bounds and upper bounds under various pi and λi.
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3.5.2 Comparison with Echelon-Stock (r,nQ) Policies

Here we numerically compare the proposed modified echelon (r̂, Q̂) policy

with the so-called echelon-stock (r, nQ) policy that also charges a shipment-

based fixed cost. The policy requires all orders in an integer multiple of

Q. Chen and Zheng [20] test the performance of the echelon-stock (r, nQ)

policy numerically. The policy parameters are obtained through a two-step

heuristic algorithm. In the first step, they assume that the demand at each

retailer is deterministic with rate λi, and then use the algorithm in Roundy

[76] to compute power-of-two order quantities. In the second step, given

these order quantities, they search for reorder points that minimize the total

holding and shortage cost. In particular, the second step can be facilitated

because the total holding and shortage cost is convex in reorder points with

fixed order quantities, as shown in Chen and Zheng [20]. We denote by

r′i and Q′i the parameters in the echelon-stock (r, nQ) policy. Recall that

the real cost of the modified echelon (r̂, Q̂) policy obtained by Monte Carlo

simulation is denoted by C̃. Similarly, we use C̃ ′ to denote the real cost

of the echelon-stock (r, nQ) policy, which is also obtained by Monte Carlo

simulation. Moreover, we define the following percentage:

δ5 ≡
C̃ ′ − C∗

C∗
× 100%,

which measures the performance of the echelon-stock (r, nQ) policy.

We list numerical comparisons between our heuristic and the echelon-

stock (r, nQ) policy in Tables 3.4 and 3.5. It can be seen that our proposed

policy performs better than the echelon-stock (r, nQ) used in Chen and Zheng

[20] for most cases. Compared with their policy, our proposed policy has the

following advantages. First, in determining order quantities, our policy takes

into account the randomness in customer arrivals, while their policy assumes
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deterministic demands. Second, we consider setup costs when optimizing

the policy parameters, while their policy selects the reorder points to mini-

mize the holding and shortage cost, without setup costs. In other words, the

echelon-stock (r, nQ) policy in Chen and Zheng [20] considers demand vari-

ability only in the second step and setup costs only in the first step. Instead,

we simultaneously consider both in determining the policy parameters; see

(3.4) and (3.15). This may explain why our proposed policy performs better

than theirs in most cases.
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h0 K0 r′i Q′i r′0 Q′0 r∗i Q∗i r̂∗0 Q̂∗0 C∗ C̃ ′ C̃ δ5(%) δ4 (%)
L0 = 1, Li = 1, Ki = 10, hi = 2, pi = 5, λi = 3

0.5 30 1 6 10 24 1 7 14 33 36.2082 40.5987 40.4156 12.13 11.62
50 1 6 5 48 1 7 13 40 39.8198 43.0385 43.7741 8.08 9.93
100 1 6 5 48 1 7 12 54 46.5281 49.2622 50.4100 5.88 8.34
200 1 6 0 96 1 7 12 74 56.1034 59.3099 60.3576 5.72 7.58

0.2 30 1 6 10 48 0 8 14 51 30.5977 32.6605 32.3352 6.74 5.68
50 1 6 10 48 0 8 14 62 32.9712 35.1758 34.5400 6.69 4.76
100 1 6 6 96 0 8 13 83 37.3535 38.9967 38.9470 4.40 4.27
200 1 6 6 96 0 8 12 115 43.5889 45.2235 45.1626 3.75 3.61

0.1 30 1 6 11 48 0 8 15 71 27.8002 29.6489 28.6153 6.65 2.93
50 1 6 10 96 0 8 15 86 29.5007 30.8464 30.3451 4.56 2.86
100 1 6 10 96 0 8 14 117 32.6414 33.9366 33.4587 3.97 2.50
200 1 6 6 192 0 8 13 161 37.1005 38.2440 37.9214 3.08 2.21

0.05 30 1 6 11 96 0 8 16 99 25.8588 26.8926 26.3359 4.00 1.84
50 1 6 11 96 0 8 15 122 27.0695 28.1413 27.5359 3.96 1.72
100 1 6 6 192 0 8 15 164 29.3075 30.2574 29.7592 3.24 1.54
200 1 6 6 192 0 8 14 226 32.4819 33.3753 32.8961 2.75 1.28

0.01 30 1 6 12 192 0 8 17 220 23.3295 23.9376 23.4170 2.61 0.38
50 1 6 12 192 0 8 17 269 23.8784 24.5524 23.9658 2.82 0.37
100 1 6 11 384 0 8 16 365 24.8872 25.4076 24.9653 2.09 0.31
200 1 6 11 384 0 8 16 503 26.3165 26.9477 26.3970 2.40 0.31

Table 3.4: Comparisons between (r,Q) and (r̂, Q̂) policies under various h0 and K0.
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pi λi r′i Q′i r′0 Q′0 r∗i Q∗i r̂∗0 Q̂∗0 C∗ C̃ ′ C̃ δ5(%) δ4 (%)
L0 = 1, Li = 1, Ki = 10, K0 = 100, h0 = 0.1, hi = 1

5 1 0 4 2 64 0 5 6 68 15.5877 16.3485 16.1299 4.88 3.48
3 2 6 8 96 1 9 17 116 27.2725 29.7625 28.2124 9.13 3.45
5 3 10 13 160 3 12 27 151 35.4459 36.8717 36.7580 4.02 3.70
10 9 10 35 160 7 17 50 213 50.7022 56.8671 52.5554 12.16 3.65

10 1 1 4 4 64 0 6 9 67 16.7343 17.7010 17.3441 5.78 3.64
3 3 6 14 96 2 9 20 116 29.2143 31.5021 30.1073 7.83 3.06
5 4 10 22 160 4 12 31 150 37.9151 39.2382 39.1529 3.49 3.26
10 10 10 44 160 9 17 56 212 54.1700 59.7910 55.9588 10.38 3.30

20 1 1 4 5 64 1 5 10 67 17.8137 18.8559 18.3446 5.85 2.98
3 4 6 16 96 3 9 22 117 30.9848 33.2126 31.8308 7.19 2.73
5 5 10 25 160 5 12 34 150 40.1998 41.4787 41.3914 3.18 2.96
10 12 10 47 160 11 16 60 212 57.2868 62.5457 59.0076 9.18 3.00

50 1 2 4 7 64 2 5 12 67 19.4298 20.0845 20.0069 3.37 2.97
3 5 6 18 96 4 9 25 117 33.1586 35.3168 34.0333 6.51 2.64
5 7 10 28 160 7 11 37 150 42.8963 43.9782 44.0404 2.49 2.67
10 13 10 51 160 13 16 65 212 61.0013 66.9631 62.7135 9.77 2.81

Table 3.5: Comparisons between (r,Q) and (r̂, Q̂) policies under various pi and λi.
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We also observe that our heuristic is more likely to outperform the echelon-

stock (r, nQ) policy in the cases when h0 is small or K0 is large. This is

consistent with the asymptotic optimality of our proposed policy shown in

Theorem 3.8. As h0 increases or K0 increases, our heuristic policy seems to

converge quickly and become near-optimal, whereas the effectiveness of the

echelon-stock (r, nQ) policy does not seem to converge quickly. Moreover,

Table 3.5 shows that our proposed policy tends to be more robust as pi or

λi varies. For example, when λi takes the value of 3 or 10, the gap between

the cost of the echelon-stock (r, nQ) policy and the induced penalty lower

bound, δ5, can be more than 10%, whereas the gap for our proposed policy,

δ4, is less than 3.7%. It should also be noted that the echelon-stock (r, nQ)

policy can perform better than our proposed policy in some cases, e.g., when

h0 is relatively large; see Table 3.4.

3.6 Conclusion

In this work, we have studied the classic distribution inventory system with

setup costs per shipment at each installation. The optimal policy of such a

system is unknown, even without setup costs. We have studied a class of

modified echelon (r,Q) policies that do not require an integer-ratio property

or a synchronized (nested ordering) property. For a constructed modified

echelon (r,Q) heuristic policy, we have provided 1) worst-case performance

guarantees by comparing its performance to a lower bound of the optimal

policy and 2) conditions under which the heuristic is asymptotically optimal.

Our work can be easily extended to a distributions system where the

warehouse has a minimum order quantity (MOQ) requirement. The MOQ

requirement means that whenever an order is placed, the order quantity must

be no less than a specified level, say M . Suppose the supplier stipulates this
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MOQ requirement to the warehouse, that is, the warehouse, if ordering, must

order at least M units each time; otherwise, the warehouse places no order.

With some slight adjustment, our heuristic policy in (MERQD) can be mod-

ified to accommodate a distribution system with MOQ requirements, that

is, (r̂, Q̂) = (r̃∗0,min{M, Q̃∗0}, r∗1, Q∗1, . . . , r∗N , Q∗N). Moreover, we can obtain

the performance guarantees analogously. For example, the lower bound on

the warehouse’s cost in (3.8) should be adjusted as C∗0 = C0(r∗0(QM
0 ), QM

0 ),

where QM
0 ≡ min{M,Q∗0}.

Finally, we do note that the bounds developed on the proposed modified

(r,Q) policies leave something to be desired, as evidenced by the performance

of the numerical experiments. This may be attributable to the complexity

of the one-warehouse-multi-retailer system. Nevertheless, our work repre-

sents the first attempt in identifying easy-to-compute policies and bounds

for distribution systems.

It should be noted the current performance bounds are still dependent

on the optimal solutions of single-stage inventory systems. As for future

research directions, one may try to derive some closed-form performance

bounds which explicitly depend on system primitives. Ideally, a constant

performance bound is also expected. Another future direction is to study

the relationship between the performance bounds and number of retailers.

We can numerically show that the performance bounds converge to a constant

as the number of retailer increases. But the closed form of the constant is

still unclear.
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Chapter 4

Single-Echelon Systems with

MOQ and Batch Ordering

4.1 Introduction

In industries, minimum order quantity (MOQ) and batch ordering, applied

independently or simultaneously, are two common requirements made by

suppliers, both of which can help companies take advantage of economies

of scale and hence reduce costs. The MOQ requirement means that the

order quantity must equal or exceed a specified level, if an order is placed.

The batch ordering requirement means that the order quantity must be an

integral multiple of a specified given batch size.

The application of an MOQ is common in practice. With the prevalence

of e-commerce, MOQs are becoming more and more common in our lives, es-

pecially in online business-to-business sourcing portals such as alibaba.com,

where suppliers often set such requirements. MOQs are also applied in man-

ufacturing industries for products that have short lifetimes or long leadtimes.

A well-known example is Sport Obermeyer, a fashion sport skiwear manu-

facturer, which has a minimum production level of 600 garments in Hong

Kong and 1200 garments in China per order (Zhao and Katehakis [96]).

In fact, MOQ requirements are quite common in China and other low cost
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manufacturing countries. Low profit margins force manufacturers to pursue

large production quantities to break even. On the other hand, batch order-

ing is also a ubiquitous requirement in industries, because materials often

flow in fixed batch sizes in supply chains. For example, raw materials usu-

ally arrive at factories in full truckloads, work-in-process is often processed

in convenient lot sizes between production stages, and finished goods may

be transported in full containers from suppliers to warehouses or distribu-

tion centers. Therefore, it is of no surprise that suppliers who apply an MOQ

may also require batch ordering. Indeed, our decision to jointly consider both

MOQ and batch ordering requirements in this work is largely motivated by

our experience with a wholesale company in Hong Kong. For a variety of

products, the firm first replenishes its stock from suppliers and then sells to

retail customers, and for most of these products, the firm stipulates both

MOQ and batch ordering requirements.

The coexistence of an MOQ and batch ordering has a two-sided effect.

On the one hand, requiring an MOQ and batch ordering simultaneously

helps suppliers reduce the risk of uncertainty and achieve economies of scale.

On the other hand, the requirements may have a negative effect on buyers’

inventory control, especially when MOQs are relatively large compared with

their demand, which is not unusual in practice. Managers in such situations

need principles or tools to help control their inventory. However, to the

best of our knowledge, no research has investigated inventory systems with

both MOQ and batch ordering requirements. Thus, the primary goal of this

work is to fill this gap in the literature. In this work, we consider a single

product stochastic periodic-review inventory system with both MOQ and

batch ordering requirements. The selling firm can make a decision at the

beginning of each time period after reviewing the inventory position. When

the firm decides to place an order, the order quantity must satisfy both the
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MOQ and the batch ordering constraints, where we assume the MOQ is

an integral multiple of the batch size. The leftover inventory is carried to

the next period and incurs a holding cost, whereas unsatisfied demand is

fully backlogged and incurs a backordering cost. The total costs consist of

the linear ordering cost, the holding cost, and the backordering cost. The

objective is to minimize the long-run average cost of the system.

The optimal policy for the system with only the MOQ requirement, which

is partially characterized by Zhao and Katehakis [96], is rather complicated,

even without batch ordering. Therefore, for inventory systems with both

MOQ and batch ordering requirements, it is necessary to propose some effec-

tive heuristic policies, which is the major contribution of our work. Facing

the MOQ requirement, many companies apply the (s, S) type policy to con-

trol inventories in practice (Zhou et al. [99]). Based on this, we first propose

a two-parameter policy with a similar structure, i.e., the (s, k) policy, where

s < k < s + M and M represents the MOQ. The (s, k) policy operates as

follows: at the beginning of each period, if the inventory position is less than

or equal to s, order a quantity that is just sufficient to bring the inventory

position to s+M or above (the inventory position after ordering can be larger

than s+M , because the order quantity must also satisfy the batch ordering

requirement); if the inventory position exceeds s but is no more than k, order

exactlyM ; otherwise, order nothing. We identify the bounds for the optimal

k, and propose algorithms to find the optimal values of k and s. We also

examine a simpler and more easy-to-use policy, i.e., the S policy, which is a

special case of the (s, k) policy. The S policy operates in the same way as

the (s, k) policy with s = S−M and k = S− 1. The numerical study shows

that both these polices have close-to-optimal performance in most cases and

that there is an overwhelming preponderance to the best (s, S) policy over

all examples.
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The remainder of this chapter is organized as follows. The literature on

MOQ and batch ordering is discussed in Section 4.2. In Section 4.3, the

model description and notations are presented. In Section 4.4, we propose a

two-parameter (s, k) policy and present algorithms to optimize the policy. A

simpler one-parameter policy is introduced in Section 4.5. Numerical exam-

ples are conducted in Section 4.6 to measure the effectiveness of these two

policies by comparing them with other policies. Finally, Section 4.7 concludes

the work by summarizing the findings.

4.2 Literature Review

The existing research on stochastic inventory systems is quite extensive.

Here, we mention only a few of the most relevant papers. Many papers

focus on problems associated with batch ordering or MOQ separately. The

literature related to our work can be divided into two areas: 1) supply chain

inventory management with batch ordering; and 2) supply chain inventory

management with MOQ.

In the area of batch ordering, Veinott Jr [92] shows the optimality of

the (R,Q) policy for a periodic-review inventory system with batch ordering

and no fixed ordering cost. This (R,Q) policy operates as follows: at the

beginning of each period, if the inventory position is less than the reorder

point R, order the smallest integral multiple of the batch size Q that will

bring the inventory position to at least R; otherwise order nothing. Chen

[18] generalizes Veinott Jr [92]’s result to multi-echelon systems settings and

demonstrates the optimality of (R, nQ) policies for multi-stage serial and

assembly systems where materials flow in fixed batches and the stochastic

demands are stationary over time. Chao and Zhou [16] find the optimal in-

ventory control policy for a multi-echelon serial system with batch ordering
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and fixed replenishment intervals. They derive a distribution-function solu-

tion for its optimal control parameters and design an efficient algorithm for

computing those parameters. Huh and Janakiraman [54] extend the work

of Veinott Jr [92] and Chen [18] by demonstrating the optimality of echelon

(R, nQ) policies for multi-echelon serial systems with nested batch ordering

and non-stationary demands. Although it is not optimal in some complex

inventory systems with batch ordering, the reorder point, lot-size ordering

policy is easy to implement. For this reason, numerous heuristic policies

have been proposed, see for example Schwarz and Schrage [78], De Bodt

and Graves [24], Gallego [37], Axsäter and Zhang [7], Broekmeulen and van

Donselaar [12] and Shang and Zhou [79].

In the area of MOQ, Fisher and Raman [34] consider a two-period model

with an MOQ in each period. They work out the optimal order quantity

by using stochastic programming methods. Zhao and Katehakis [96] intro-

duce the concept of M-increasing function and first partially characterize

the optimal policy for multi-period inventory systems with MOQ. For the

uncharacterized part, the authors give easily computable upper bounds and

asymptotic lower bounds for these intervals. However, for the characterized

part, the optimal policy is complexly structured and difficult to implement

in practice. Hellion et al. [43] propose an algorithm with time complexity

in O(T 5) for a capacitated lot sizing problem with MOQ and concave costs.

For other references on MOQ, the reader is referred to Porteus and Whang

[74], Chan and Muckstadt [14], Lee [60], Porras and Dekker [73], and Okhrin

and Richter [69].

The most closely related papers to our work are Zhou et al. [99] and Kies-

müller et al. [59]. Zhou et al. [99] propose a two-parameter heuristic policy

for a stochastic inventory system with MOQ requirement and demonstrate

that the performance of this policy is close to the optimal policy except for
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a few cases when the coefficient of the demand distribution is very small.

Kiesmüller et al. [59] propose a simpler policy, which has only one parame-

ter S. This policy works as follows: no order is placed when the inventory

position is not less than the level S; otherwise an order is placed to raise the

inventory to S. However, if this order is smaller than the MOQ, the order

quantity is increased to the MOQ. The authors show the effectiveness of this

policy and develop simple newsvendor inequalities for near-optimal policy

parameters. However, both Zhou et al. [99] and Kiesmüller et al. [59] do not

consider batch ordering. To the best of our knowledge, our work is the first

to study stochastic inventory system with both MOQ and batch ordering re-

quirements. To combine the two requirements, we need to tackle the problem

of selecting an order quantity that satisfies both the constraints simultane-

ously. In a system with only the MOQ constraint, the order quantity can

be any integer that is larger than or equal to the MOQ. However, with the

addition of batch ordering, the firm has to either round up or round down

the order quantity to an integral multiple of the given batch size. Therefore,

in our model, the order quantities are subject to two kinds of jumps, which

makes the analysis much more difficult.

4.3 Model Description

We consider a periodic-review inventory system for a single item with stochas-

tic demand. The demand D in each period is an independent identically

distributed (i.i.d.) random variable. At the beginning of each period, after

reviewing the initial inventory position, the retailer decides whether to make

a placement. When an order is made, the order quantity is at least M , the

minimum order quantity (MOQ). We assume that M is an integral multiple

of the batch size Q and M > Q. If M ≤ Q, the problem is reduced to that
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of Veinott Jr [92], the optimal policy of which can easily be computed. After

the order placement, the demand is realized and unsatisfied demand will be

backlogged. A penalty cost p per unit will be incurred. Note that the de-

mand is satisfied according to the first-come-first-service rule in our system.

At the end of each period, excess inventory will generate an inventory holding

cost h per unit per period. In our model, we assume linear variable cost and

no fixed ordering cost. Without loss of generality, we assume zero lead-time.

Our model can be easily extended to systems with positive lead times using

the standard method in Heyman and Sobel [44]. The average cost criterion

is used to evaluate the inventory system. Because the linear ordering costs

can be ignored under the average cost criterion, the unit ordering cost is set

to be 0, e.g., Zheng and Federgruen [98]. The objective is to minimize the

long-run average cost of the system.

In the remainder of this chapter, the following notations will be used:

M Minimum order quantity

Q Batch size

Dt Demand in period t

qt Order quantity in period t

h Holding cost per unit per period

p Penalty cost per unit per period

xt The inventory position before ordering in period t

yt The inventory position after ordering in period t

Z+ max(0, Z)

[a, b] The integer numbers between a and b (if a and b are integers, they are included)

The expected cost function Ct(yt) in period t can be written as

Ct(yt) = hE[(yt −Dt)
+] + pE[(Dt − yt)+], (4.1)
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where yt and Dt are both integers. We can easily find that C(yt) is convex

and C(yt) → +∞ as |yt| → ∞. In the remainder of this work, we omit the

subscript when there is no ambiguity. Let y∗ be a minimizer of C(y). We

also assume that x, M , and Q are all integers.

4.4 The Two-Parameter Heuristic Policy

As above mentioned, Zhao and Katehakis [96] find the structure of the opti-

mal policy for the system with an MOQ to be rather complex and conclude

that such an optimal policy is not practically implementable. The presence

of batch ordering makes the problem even more complicated. Therefore, it

is necessary to develop some easily implementable polices that have good

performance. Based on the analysis of multi-period stochastic inventory sys-

tem with an MOQ (see Zhou et al. [99]) and the optimal policy structure

for batch ordering (see Veinott Jr [92]), we propose a modified (s, k) policy:

given an initial inventory position xt and two integer parameters s and k,

where s < k < s+M , the order quantity qt is

qt = yt − xt =


M +mQ, if xt ≤ s;

M, if s < xt ≤ k;

0, if xt > k.

(4.2)

wherem ≥ 1, andm is the unique integer such that 0 < yt−(s+M) ≤ Q.

That is, when xt is not larger than s, order up to yt, such that s+M < yt ≤

s+M +Q; when xt is larger than s but does not exceed k, order exactly M ;

and when xt is above k, do not make an order. This policy is an extension of

the (s, k) policy proposed in Zhou et al. [99], where no batch ordering exists.

For this reason, we simply call our modified (s, k) policy the (s, k) policy in

the remainder of this work. To identify the optimal policy parameters s and
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k that minimize the long-run average cost, we use a discrete time Markov

chain with transition matrix P and analyze the system under two cases:

∆ ≥ Q and ∆ < Q, where ∆ is defined as the difference between k and s,

i.e., ∆ = k − s.

4.4.1 Case 1: ∆ ≥ Q

Under the condition ∆ ≥ Q, ∆ has a finite state space [Q,M − 1]. In our

(s, k) policy, the inventory position after order placement in the (t + 1)th

period is yt+1 = xt+1 + qt+1 = yt −Dt + qt+1, so

yt+1 =


yt −Dt, if yt −Dt > k;

yt −Dt +M, if s < yt −Dt ≤ k;

yt −Dt +M +mQ, if yt −Dt ≤ s.

(4.3)

We can see that {yi} is a discrete time Markov chain (DTMC) and has

the finite state space [k + 1, k +M ]. The state space can be split into three

segments:

1. [k + 1, s + M ]: If yt+1 ∈ [k + 1, s + M ], it means that qt+1 = 0, and

Dt = yt − yt+1.

2. [s + M + 1, s + M + Q]: If yt+1 ∈ [s + M + 1, s + M + Q], there are

three possibilities: qt+1 = 0, qt+1 = M , or qt+1 = M + mQ. The

three terms correspond to Dt = yt − yt+1, Dt = yt − yt+1 + M , and

Dt = yt − yt+1 +M +mQ, respectively.

3. [s+M +Q+ 1, k+M ]: If yt+1 ∈ [s+M +Q+ 1, k+M ], then qt+1 = 0

or qt+1 = M , and Dt = yt − yt+1, or Dt = yt − yt+1 +M .

It is easy to compute the transition probabilities Pi,j = Prob(yt+1 = j|yt = i),
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and hence the transition matrix P:

Pi,j =



p(i−j)+ , for j ∈ [k + 1, s+M ]

∀i ∈ [k + 1, k +M ],∑∞
m=0 p(i+M+mQ−j) + p(i−j)+ , for j ∈ [s+M + 1, s+M +Q]

∀i ∈ [k + 1, k +M ],

p(i+M−j) + p(i−j)+ , for j ∈ [s+M +Q+ 1, k +M ]

∀i ∈ [k + 1, k +M ],
(4.4)

where pk = Prob(Dt = k) and p(i−j)+ equals to pi−j if i ≥ j, and zero

otherwise. For convenience of notation, m is allowed to take the value of 0

in the expression.

Because the Markov chain is irreducible and positive recurrent, the unique

steady state probabilities ~π = {π1, π2, ..., πM} exist, where πi denotes the

long-run average proportion of time in which the inventory position y is

k + i. Because the Markov chain is also aperiodic, πi is also the limiting

probability that the chain is in state i.

Let t→∞, we can have


∑M

i=1 πi = 1

~πP = ~π
(4.5)

Therefore, we can calculate the stationary probabilities by solving the linear

equations (4.5). Before exploring the properties of the (s, k) policy, we must

point out that given the MOQ M , the batch size Q, and the demand distri-

bution, the transition matrix P and stationary probabilities ~π depend only

on ∆, and are independent of s. Note that a given ∆ has and only has one

corresponding P and ~π. Now we can calculate the long-run average cost for
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this case:

L(∆, k) =
M∑
i=1

πiC(k + i). (4.6)

We can derive the following proposition:

Proposition 4.1. For a given ∆ ≥ Q, L(∆, k) is convex in k.

Let k∗1 be the value at which L reaches its minimum for a given ∆ ≥ Q.

Note that k∗1 is in fact a function of ∆. For convenience of notation, we use

k∗1 to denote the corresponding optimal k for a given ∆ ≥ Q.

Proposition 4.2. Given ∆ ≥ Q, k∗1 satisfies y∗−M ≤ k∗1 < y∗ ≤ k∗1 +M .

For a given ∆, the preceding propositions help us narrow the search space

of k∗1. Based on the propositions, we design the following algorithm to

compute ∆∗ and the corresponding k∗1 that minimize the long-run average

cost.

Algorithm 4.1 Policy Optimization for ∆ ≥ Q

1 Set L∗1 ←Inf;
2 for ∆ = Q to M − 1
3 calculate P by (4.4);
4 calculate ~π by (4.5);
5 for k = y∗ −M to y∗ − 1
6 calculate L(∆, k) by (4.6);
7 if L(∆, k) < L∗1

8 L∗1 ← L(∆, k), k∗1 ← k, ∆∗1 ← ∆;

When computing the transition matrix P, we find there are many re-

peated calculations. To avoid calculating the same probability repeatedly,

we also provide a recursive method to get P for this case. For a given ∆,

the corresponding transition matrix P can be divided into three parts by

column, and each part is a submatrix. The first part is the first (M − ∆)

columns of P with Pi,j = p(i−j)+ in this part. The second part is a sub-

matrix with Q columns consecutive to the first part. In the second part,
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Pi,j = p(i−j)+ +
∑∞

m=0 p(i+M+mQ−j). The third part is the last ∆−Q columns

with Pi,j = p(i+M−j) + p(i−j)+ . With an abuse of notation, let P∆ denote the

transition matrix for a given ∆. If ∆ = Q, we directly calculate P∆ by (4.4).

Otherwise, we can calculate P∆ recursively. Now, assume we already know

P∆−1. The following algorithm enables us to calculate P∆ recursively. The

Algorithm 4.2 Calculating P for ∆ ≥ Q

1 if ∆ = Q
2 calculate P by (4.4)
3 else
4 for i = 1 to M
5 for j = 1 to M −∆

6 P∆
i,j ← P∆−1

i,j ;
7 j ←M −∆ + 1;
8 for i = 1 to M − 1

9 P∆
i,j ← P∆−1

i+1,j+1;
10 i←M ;
11 P∆

i,j ← P∆−1
i,j +

∑∞
m=0 p(i+M+mQ−j);

12 for i = 1 to M
13 for j = M −∆ + 2 to M −∆ +Q

14 P∆
i,j ← P∆−1

i,j ;
15 if ∆ = Q+ 1
16 for i = 1 to M − 1
17 P∆

i,j ← Prob(D = i);
18 i←M ;
19 P∆

i,j ← Prob(D = M) + Prob(D = 0);
20 else
21 j ←M −∆ +Q+ 1;
22 for i = 1 to M − 1

23 P∆
i,j ← P∆−1

i+1,j+1;
24 i←M ;
25 P∆

i,j ← Prob(D = ∆−Q− 1) + Prob(D = M + ∆−Q− 1);
26 for i = 1 to M
27 for j = M −∆ +Q+ 2 to M
28 P∆

i,j ← P∆−1
i,j ;

motivation for Algorithm 4.2 is quite simple: Pi,j depends only on the value

of i − j. If P∆
i,j and P

∆−1
i,j are in the same part, then they have an identical

expression and hence P∆
i,j = P∆−1

i,j . If P∆
i,j and P

∆−1
i,j are not in the same part,

then P∆
i,j and P∆−1

i,j+1 (if exists) must be in the same part. With i − j being
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a constant, P∆
i,j = P∆−1

i+1,j+1 for i ∈ [1,M − 1], j ∈ [1,M − 1]. For the case

i = M or j = M , we calculate P∆
i,j separately.

4.4.2 Case 2: ∆ < Q

At the beginning of this subsection, we must point out that as we show in

the numerical study, Case 2 does arise. Under the condition ∆ < Q, ∆ has

a finite state space [1, Q − 1]. Similar to the case ∆ ≥ Q, the inventory

position after a possible ordering is still a discrete time Markov chain, and

the Markov chain has the finite state space [k + 1, s+M +Q] in this case.

The state space can also be split into three segments:

1. yt+1 ∈ [k + 1, s + M ]: If yt+1 ∈ [k + 1, s + M ], it means that qt+1 = 0,

hence Dt = yt − yt+1.

2. yt+1 ∈ [s+M+1, k+M ]: If yt+1 ∈ [s+M+1, k+M ], it means that qt+1 =

0,M, or M + mQ. The three terms correspond to three possibilities

Dt = yt − yt+1, yt − yt+1 + M, and yt − yt+1 + M + mQ, respectively.

Recall that m is the largest integer such that 0 < yt+1 − (s+M) ≤ Q

and m ≥ 1.

3. yt+1 ∈ [k+M+1, s+M+Q]: If yt+1 ∈ [k+M+1, s+M+Q], it means

that qt+1 = 0 or M , then Dt = yt − yt+1, or Dt = yt − yt+1 +M +mQ.
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The transition probabilities Pi,j = Prob(yt+1 = j|yt = i) can be calculated

easily and the transition matrix P is

Pi,j =



p(i−j)+ , forj ∈ [k + 1, s+M ]

∀i ∈ [k + 1, s+M +Q],∑∞
m=0 p(i+M+mQ−j) + p(i−j)+ , forj ∈ [s+M + 1, k +M ]

∀i ∈ [k + 1, s+M +Q],∑∞
m=1 p(i+M+mQ−j) + p(i−j)+ , forj ∈ [k +M + 1, s+M +Q]

∀i ∈ [k + 1, s+M +Q],

(4.7)

Again, let t→∞, the limiting probabilities are the steady state probabil-

ities ~π = {π1, π2 . . . πs+M+Q−k}. We can calculate the stationary probabilities

by solving the linear equations

 Σs+M+Q−k
i=1 πi = 1

~πP = ~π
(4.8)

The transition matrix P and stationary probabilities ~π still only depend

on ∆, and are independent of s. Now we have the long-run average cost for

this case:

L(∆, k) =

M+Q−(k−s)∑
i=1

πiC(k + i) =

M+Q−∆∑
i=1

πiC(k + i). (4.9)

The following propositions are useful in searching for the optimal parameters.

Proposition 4.3. For a given ∆ < Q, L(∆, k) is convex in k.

For a given ∆ < Q, let k∗2 be the value of k at which L(∆, k) reaches

minimum.

Proposition 4.4. Given ∆ < Q, k∗2 satisfies y∗−M −Q+ ∆ ≤ k∗2 < y∗ ≤

k∗2 +M +Q−∆.
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Based on these propositions, we provide the following algorithm to com-

pute ∆∗ and the corresponding k∗2 for this case.

Algorithm 4.3 Policy Optimization for ∆ < Q

1 Set L∗2 ←Inf;
2 for ∆ = 1 to Q− 1
3 calculate P by (4.7);
4 calculate ~π by (4.8);
5 for k = y∗ −M −Q+ ∆ to y∗ − 1
6 calculate L(∆, k) by (4.9);
7 if L(∆, k) < L∗2

8 L∗2 ← L(∆, k), k∗2 ← k, ∆∗2 ← ∆;

We also propose a recursive method for calculating P for this case. In

this case, P is a (M −∆ + Q) × (M −∆ + Q) matrix. Obviously, the size

of P will decrease as ∆ increases. P can also be divided into three parts in

this case. The first part is the first M − ∆ columns, with Pi,j = p(i−j)+ in

this part. The second part is a submatrix with ∆ columns consecutive to the

first part. In this part, Pi,j = p(i−j)+ +
∑∞

m=0 p(i+M+mQ−j). The third part

is the last Q−∆ columns, with Pi,j = p(i−j)+ +
∑∞

m=1 p(i+M+mQ−j). Similar

to the case of ∆ ≥ Q, we also provide a recursive algorithm to calculate P.

Again with an abuse of notation, we write P∆ to denote the corresponding

P for a given ∆.

Algorithm 4.4 Calculating P for ∆ < Q

1 if Q = 1
2 calculate P by (4.7)
3 else
4 for i = 1 to M −∆ +Q
5 for j = 1 to M −∆ +Q
6 if j = M −∆ + 1

7 P∆
i,j ← P∆−1

i+1,j+1;
8 else
9 P∆

i,j ← P∆−1
i,j ;
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Now, we can get two pairs of solutions (∆∗1, k∗1) and (∆∗2, k∗2) for two

cases separately. To get the global optimal solution, we only need to compare

the two pairs and find the optimal pair of (∆∗, k∗) that minimizes L(∆, k),

i.e., (∆∗, k∗) = arg min{L(∆∗1, k∗1), L(∆∗2, k∗2)}. The following algorithm

describes the whole (s, k) policy optimization.

Algorithm 4.5 Policy Optimization for the (s, k) policy

1 Set L∗1 ←Inf, L∗2 ←Inf;
2 for ∆ = Q to M − 1
3 calculate P by Algorithm 4.2;
4 calculate ~π by (4.5);
5 for k = y∗ −M to y∗ − 1
6 calculate L(∆, k) by (4.6);
7 if L(∆, k) < L∗1

8 L∗1 ← L(∆, k), k∗1 ← k, ∆∗1 ← ∆;
9 for ∆ = 1 to Q− 1

10 calculate P by Algorithm 4.3;
11 calculate ~π by (4.8);
12 for k = y∗ −M −Q+ ∆ to y∗ − 1
13 calculate L(∆, k) by (4.9);
14 if L(∆, k) < L∗2

15 L∗2 ← L(∆, k), k∗2 ← k, ∆∗2 ← ∆;
16 if L∗1 > L∗2

17 L∗ ← L∗2, k∗ ← k∗2, ∆∗ ← ∆∗2;
18 else
19 L∗ ← L∗1, k∗ ← k∗1, ∆∗ ← ∆∗1;

4.5 The One-Parameter Heuristic Policy

In this section, we develop a simpler heuristic policy: when the initial inven-

tory position is not less than S, no order is placed; when the initial inventory

position is less than S but exceeds S−M , order exactly M ; otherwise, order

M + mQ, where m is the smallest integer such that xt + M + mQ > S.

The motivation for this policy is quite intuitive. Veinott Jr [92] has shown

the optimality of the (R,Q) policy for batch ordering. The key principle of

the (R,Q) policy is to order the smallest integral multiple of Q to bring the
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inventory position above the reorder point R. In our model, there is an MOQ

constraint, so the order quantity cannot be less than M . Based on this, the

order quantity in period t is qt, such that

qt = yt − xt =


M +mQ, if xt ≤ S −M ;

M, if S −M < xt < S;

0, if xt ≥ S.

(4.10)

We need to point out that when there is no MOQ constraint, i.e., M = 0,

the modified S policy reduces to the simple (R,Q) policy. Or when Q =

1, the modified S policy reduces to the S policy of Kiesmüller et al. [59].

For this reason, we simply call the modified S policy the S policy. In our

model, because M > Q, the state space of the inventory level after ordering

in the S policy is [S, S + M − 1]. The inventory position after ordering is a

discrete time Markov chain, and we can calculate the transition probability

Pi,j = Prob(yt+1 = j|yt = i) and transition matrix P, where

Pi,j =



p(i−j)+ , for j = S,

∀i ∈ [S, S +M − 1],∑∞
m=0 p(i+M+mQ−j) + p(i−j)+ , for j ∈ [S + 1, S +Q],

∀i ∈ [S, S +M − 1],

p(i+M−j) + p(i−j)+ , for j ∈ [S +Q+ 1, S +M − 1],

∀i ∈ [S, S +M − 1].
(4.11)

We can also use the same method as that of the (s, k) policy to calculate

the stationary probabilities ~π by (4.5) and hence the long-run average cost

can be calculated by L(S) =
∑M

i=1 πiC(S + i− 1).

Note that the S policy is in fact a special case of the (s, k) policy, where

s = S −M and k = S − 1. Therefore, Proposition 1 and Proposition 2 still
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hold for the S policy and the policy optimization is simpler: because this is a

special case of the (s, k) policy where ∆ = k−s = M−1, we can calculate the

transition matrix and stationary probabilities, and then identify the optimal

S∗ that minimizes L(S) from the set [y∗ −M + 1, y∗] as we can do for the

general case ∆ ≥ Q. The complexity of solving the linear equation (4.5) is

O(M3), if a Gaussian elimination is used. Because most of the calculation

lies in this part, the total complexity of the S policy is O(M3), while the

complexity of the (s, k) policy is O(M4), because ∆ can take M different

values.

4.6 Numerical Study

In this section, we conduct numerical experiments to test the performance of

the (s, k) policy and the S policy. We consider two different discrete demand

distributions:

• Normal distribution

To ensure nonnegative demand, we truncate the normal distribution at

zero to avoid negative demand.

• Poisson distribution

We conduct numerical studies with respect to the following parameters:

the batch size Q, the expected demand per period E(D), the critical ratio

p/(p + h), and the demand coefficient of variation (we can omit this factor

in the case of a Poisson distribution). We assume M = 30 unless otherwise

specified. Other parameters are chosen as follows. The holding cost h = 1

is fixed. Batch size Q varies as 3, 5, 6, 10, and 15. E(D) takes the values

of 10, 15, 20, 30, and 40; p/(h + p) varies as 0.80, 0.85, 0.90, and 0.95, and

the demand coefficient of variation (c.v.) of the normal distribution takes
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the values of 0.1, 0.2, 0.3, and 0.4. The complete set of parameter values is

given in Table 4.1. All possible combinations of the parameters give us 400

instances for normally distributed demand, and 100 instances for Poisson

distributed demand. We must point that we can get the same results as

Zhou et al. [99] and Kiesmüller et al. [59], if the same parameter values are

selected and Q is fixed to be 1.

h=1; M = 30; Q ∈ {3, 5, 6, 10, 15};
E(D) ∈ {10, 15, 20, 30, 40}; p/(h+ p) ∈ {0, 80, 0.85, 0.90, 0.95};
c.v. ∈ {0.1, 0.2, 0.3, 0.4} for normal distribution

Table 4.1: Base parameter values for the numerical experiments

To better illustrate the performance of the (s, k) policy and the S policy,

we compare them with two other policies. The first policy is “the optimal

policy" that achieves the minimal average cost among all admissible policies.

We use value iteration to compute the optimal long-run average cost and the

optimal policy is computed as follows.

We initially compute the minimal average cost of a certain number of

periods. Then we keep increasing a fixed number of periods, computing the

minimal average cost of these periods, and comparing the deviation of the

two costs. The iteration does not end until the deviation is insensitive to the

increments of periods. It can shown that the long-run average cost converges

to a constant as the number of periods increases. We take this constant as

the optimal cost, which is the minimal cost among all admissible polices.

This kind of method is known as value-iteration method; see Bertsekas et al.

[10] for more details.

We compare the long-run average costs of the (s, k) policy and the S pol-

icy to the optimal cost. Denote the average cost of the (s, k) policy by Cs,k,

and CS for the S policy, and the optimal cost by COPT . For each instance,

we use G1 and G3 to denote the gaps between the costs of these policies, as
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follows:

G1 =
Cs,k − COPT

COPT
∗ 100%

and

G3 =
CS − COPT
COPT

∗ 100%

Another alternative is the (s, S) policy with S − s = M due to the

minimum order quantity constraint. This policy is often used in practice

to control inventories when there is a minimum order quantity constraint,

see Zhou et al. [99] and Robb and Silver [75]. Kiesmüller et al. [59] also

compare their proposed heuristic policy to this (s, S) policy. Due to the

batch size constraint, in our (s, S) policy, when the inventory position is less

than or equal to s, an order is placed to bring the inventory position above S

but no more than S +Q; otherwise do not order. If xt denotes the inventory

position in period n before ordering, the order quantity qt can be described

as follows:

qt =

 0, xt > s;

M +m×Q, xt ≤ s.

where m is the smallest integer subject to xt + qt > S. Note that this (s, S)

policy is in fact a special case of our (s, k) policy where ∆ = k − s = 0

(assume ∆ is allowed to be 0).

For each instance, we also test the performance of the (s, k) policy and

the S policy by comparing them to the best (s, S) policy. Denote the average

cost for the best (s, S) policy by Cs,S, and use G2 and G4 to denote the gaps

between the costs of these policies, as follows:

G2 =
Cs,S − Cs,k

Cs,k
∗ 100%
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and

G4 =
Cs,S − CS

CS
∗ 100%

We calculate the average gap, the maximal gap, and the minimal gap,

which are denoted by avgGj, minGj, and maxGj (j = 1, 2, 3, 4), respectively.

4.6.1 Performance of the (s, k) Policy

The numerical results of the examples of the (s, k) policy for normally dis-

tributed demand are given in Table 4.2. Table 4.2 summarizes the gaps G1

between the optimal policy and the (s, k) policy, and the gaps G2 between

the (s, k) policy and the best (s, S) policy. In each row, only one parameter is

fixed while all others vary. For example, for Q = 6, all the other parameters

in this row vary and result in 80 instances of normal demand.

Factor Value avgG1 maxG1 avgG2 minG2 maxG2

Q 3 1.43 25.11 37.15 1.11 150.98
5 1.32 24.32 41.76 3.75 182.92
6 1.29 23.52 44.68 7.23 235.18
10 0.91 20.33 54.72 25.65 266.56
15 0.71 19.03 59.45 30.18 228.50

E(D) 10 0.10 2.12 29.56 16.50 49.49
15 0.52 5.63 34.56 17.83 53.79
20 0.71 6.05 27.82 1.11 70.01
30 4.29 25.11 66.52 29.27 150.98
40 0.04 0.20 79.28 18.40 266.56

c.v. 0.1 4.41 25.11 72.31 1.11 266.56
0.2 0.08 1.12 53.40 18.26 112.41
0.3 0.01 0.01 36.72 17.95 58.03
0.4 0.03 0.20 27.77 16.50 42.91

p/(h+p) 0.8 0.70 13.59 49.23 4.20 228.50
0.85 0.96 16.87 48.51 2.19 266.56
0.9 1.28 20.86 46.94 1.11 255.01
0.95 1.59 25.11 45.52 1.56 235.18

Table 4.2: Performance of the (s, k) policy (normal distribution)
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It can be seen that the performance of the (s, k) policy is quite close to

that of the optimal polices in most cases. For example, at c.v. = 0.2, the

maximum G1 is 1.12%. G1 tends to decrease as Q increases. When c.v.

takes the value of 0.2, 0.3, or 0.4, the average G1 is less than 0.1%. These

results indicate that the (s, k) policy performs better when the c.v. values

are relatively large.

Table 4.2 shows that the performance of the (s, k) policy is close to the

optimal performance on average for normally distributed demand. However,

there are still a few cases in which the (s, k) policy performs much worse

than the optimal policy. When the coefficient variation of demand is small,

e.g., c.v. = 0.1, the maximum gap G1 between the optimal policy and the

(s, k) policy is 25.11% when Q = 3, E(D) = 30, and p/(h+ p) = 0.95. This

is the worst case over all 400 instances.

Table 4.2 also demonstrates that the (s, k) policy performs much better

than the best (s, S) policy over all examples. The gap, G2, between the (s, k)

policy and the best (s, S) policy can be quite substantial. For example, the

maximum G2 is 266.56% at Q = 10, E(D) = 40, c.v. = 0.1, and p/(h +

p) = 0.85. The average G2 with respect to c.v.=0.4 is 27.77%, while the

average G2 with respect to the other parameters are all larger than this

value. These results indicate that the (s, k) policy always outperforms the

best (s, S) policy.

These observations are consistent with those of Zhou et al. [99], who do

not consider batch ordering. By conducting numerical examples, Zhou et al.

[99] show that their two-parameter policy always outperforms the best (s,S)

policy, and the performance of their policy improves for normally distributed

demand as c.v. increases.

We next present the results of the examples for Poisson distributed de-

mand as shown in Table 4.3. The gap, G1, between the optimal policy and
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Factor Value avgG1 maxG1 avgG2 minG2 maxG2

Q 3 0.34 2.60 47.64 17.39 122.72
5 0.31 2.47 53.91 20.44 134.40
6 0.29 2.41 56.76 22.04 141.50
10 0.26 2.09 64.46 28.83 156.88
15 0.07 0.94 67.41 39.35 150.11

E(D) 10 0.00 0.00 27.59 17.39 44.98
15 0.05 0.21 31.55 22.11 46.03
20 0.01 0.01 30.88 19.66 49.73
30 1.21 2.60 75.15 59.32 90.01
40 0.00 0.01 125.00 71.37 156.88

p/(h+p) 0.8 0.08 0.49 59.82 19.32 156.88
0.85 0.19 1.18 59.45 19.06 154.80
0.9 0.31 1.94 58.48 18.32 145.42
0.95 0.44 2.60 54.39 17.39 133.18

Table 4.3: Performance of the (s, k) policy (Poisson distribution)

the (s, k) policy is not larger than 2.60% over all instances. As Q increases,

G1 tends to decrease. The results in Table 4.3 indicate that the (s, k) policy

achieves nearly minimal cost for Poisson distributed demand.

Table 4.3 also demonstrates that the (s, k) policy outperforms the best

(s, S) policy for Poisson distributed demand. The maximum gap G2 ranges

from 44.98% to 156.88%. As Q increases, G2 tends to increase. Even though

G2 tends to decrease as p/(h+ p) increases, the minimum G2 is still as large

as 17.39%. These results show that the (s, k) policy performs much better

than the best (s, S) policy for Poisson distributed demand.

4.6.2 Performance of the S Policy

The numerical results of the examples of the S policy for normally distributed

demand are given in Table 4.4. Table 4.4 shows that the performance of the

S policy is close to that of the optimal policy except for a few cases at c.v.

= 0.1. For example, the maximum G3 are 9.51%, 6.61%, and 5.19%, at c.v.
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= 0.2, 0.3, and 0.4, respectively. The corresponding average G3 are all at the

1% level. G3 tends to decreases, as Q increases. This is identical with our

former analysis for the (s, k) policy, recalling that the S policy is a special

case. Table 4.4 indicates that the S policy performs well in the cases with

relatively large values of demand coefficient variation.

Factor Value avgG3 maxG3 avgG4 minG4 maxG4

Q 3 4.38 40.93 32.91 -0.73 102.28
5 3.64 35.28 38.36 3.75 182.92
6 3.34 33.33 41.64 7.23 235.18
10 1.96 23.67 53.09 24.18 266.56
15 1.16 19.47 58.70 29.34 228.50

E(D) 10 0.48 5.50 29.09 16.49 49.49
15 2.51 16.08 31.99 17.77 50.28
20 1.05 7.75 27.40 -0.73 70.01
30 9.88 40.93 57.64 23.91 102.28
40 0.56 2.21 78.59 15.94 266.56

c.v. 0.1 8.53 40.93 66.09 -0.73 266.56
0.2 1.15 9.51 51.69 18.21 112.24
0.3 0.90 6.61 35.45 17.94 55.94
0.4 1.01 5.19 26.54 15.94 42.91

p/(h+p) 0.8 3.03 40.93 45.55 4.20 228.50
0.85 2.97 38.86 45.50 2.19 266.56
0.9 2.89 36.15 44.67 0.34 255.01
0.95 2.70 33.82 44.06 -0.73 235.18

Table 4.4: Performance of the S policy (normal distribution)

However, in the cases with small values of demand coefficient variation,

e.g. at c.v. = 0.1, the S policy may not perform very well. For example, the

average G3 is 8.53%, and the maximum G3 is 40.93% at c.v. = 0.1.

Table 4.4 also demonstrates that the S policy outperforms the best (s, S)

policy for normally distributed demand in most instances. Over all 400

instances, there is only one exception, where G4 = -0.73% at Q = 3, E(D)

= 20, c.v. = 0.1, and p/(h + p) = 0.95. In other instances, G4 can be

substantial. For example, the average G4 with respect to Q varies between
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32.91% and 58.70%. As Q increases, G4 tends to increase. Recalling that G3

tends to decrease as Q increases, this may lead to the conclusion that the S

policy performs better when Q is relatively large.

We next test the performance of the S policy for Poisson distributed

demand as shown in Table 4.5. We find that the average G3 is not larger

than 5.50% over all instances. The maximum G3 is 10.22%, which is attained

at Q = 3, E(D) = 30, and p/(h+ p) = 0.8.

Factor Value avgG3 maxG3 avgG4 minG4 maxG4

Q 3 1.83 10.22 45.19 17.39 122.72
5 1.48 8.36 51.96 20.44 134.40
6 1.32 7.45 55.04 22.04 141.50
10 0.81 4.65 63.53 28.83 156.88
15 0.27 1.86 67.06 39.35 150.11

E(D) 10 0.00 0.01 27.59 17.39 44.98
15 0.05 0.25 31.54 22.07 46.03
20 0.16 0.38 30.69 19.48 49.72
30 5.50 10.22 67.96 57.28 78.31
40 0.00 0.01 125.00 71.36 156.88

p/(h+p) 0.8 1.34 10.22 57.62 19.31 156.88
0.85 1.20 9.21 57.76 19.05 154.80
0.9 1.08 8.35 57.24 18.32 145.42
0.95 0.95 7.18 53.61 17.39 133.18

Table 4.5: Performance of the S policy (Poisson distribution)

Table 4.5 also shows that the S policy performs better than the best

(s, S) policy for Poisson distributed demand in all instances. The gap, G4,

between the S policy and the best feasible (s, S) policy is substantial. Over

all 400 instances, G4 varies between 17.39% and 156.88%.

These observations are consistent with Kiesmüller et al. [59], recalling that

when Q=1, our S policy reduces to the one-parameter policy of Kiesmüller

et al. [59], who also show, by the way of numerical study, the superiority of

the one-parameter policy to the (s, S) policy.

The above-mentioned numerical examples are all taken when M = 30.
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We next present the results of the (s, k) policy and the S policy for different

values of M . In the remainder of this subsection, Q varies as 3, 5, and 6 and

M can take different values. Because M is an integral multiple of Q, we let

M take the values of 10, 15, and 20 when Q = 5, otherwise M varies as 12,

18, and 24. E(D) varies as 5, 10, 15, 20, and 25. Other parameters take the

same values as shown in Table 4.1, resulting in a total of 720 instances for

normally distributed demand. Table 4.6 shows the performance of the (s, k)

policy and the S policy with different values of M . From Table 4.6, we can

draw several similar conclusions to the case withM=30. First, both the (s, k)

policy and the S policy have good performance close the the optimal policy

in most cases. For example, the average G1 and G3 with respect to different

M are all at the 1% level. Second, the (s, k) policy and the S policy perform

much worse than the optimal policy when the demand variation is small, i.e.

c.v. = 0.1. The average G1 and G3 are 2.29% and 2.31%, respectively, at

c.v. = 0.1, while they are all less than the 0.1% at other c.v. levels. The

maximum G1 and G3 are 21.77% and 29.22%, which are also much larger

than the values at higher c.v. levels. We should also note that for a fixed

Q, G1 and G3 tend to increase as M increases. For example, when Q=5, the

average G1 increases from 0.73% to 1.15% as M increases from 10 to 20.

4.6.3 Sensitivity Analysis

In this section, we first compare the performances of the (s, k) policy and

the S policy. In fact, in some instances, they have the same performance,

because the S policy is a special case of the (s, k) policy. However, we are still

interested in the differences between the policies over all instances. We use

G5 to denote the gap between the (s, k) policy and the S policy as follows:

G5 =
CS − Cs,k
Cs,k

∗ 100%
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Factor Value avgG1 maxG1 avgG3 maxG3

Q 3 0.51 9.00 0.52 15.53
5 0.90 21.77 0.91 29.22
6 0.37 6.83 0.38 6.83

E(D) 5 0.01 0.33 0.01 0.33
10 0.78 18.38 0.78 19.66
15 1.13 20.73 1.13 22.73
20 0.91 21.77 0.92 29.22
25 0.15 3.24 0.16 6.95

c.v. 0.1 2.29 21.77 2.31 29.22
0.2 0.08 1.08 0.09 6.95
0.3 0.01 0.03 0.02 5.37
0.4 0.01 0.02 0.02 4.33

p 0.8 0.45 11.91 0.47 29.22
0.85 0.54 14.24 0.56 26.93
0.9 0.67 18.79 0.68 26.34
0.95 0.72 21.77 0.73 25.01

M 10 0.73 18.38 0.73 19.66
15 0.83 20.73 0.83 22.73
20 1.15 21.77 1.16 29.22
12 0.24 7.01 0.24 7.01
18 0.40 8.31 0.40 15.53
24 0.69 9.00 0.70 9.04

Table 4.6: Performance of the two policies for different values of M

To better illustrate the differences, we take all the instances at Q = 5 as an

example, and enumerate the results in Table 4.7. It can be seen that the (s, k)

policy does not perform significantly better than the S policy except for a few

cases with small values of demand coefficient variation. For example, when

c.v. = 0.1, the maximum G5 is 20.42% at E(D) = 30. However, when c.v.

is relatively large, the S policy performs nearly as well as the (s, k) policy.

The maximum G5 is less than 8%, and in many instances these two policies

have the same performance. These results indicate that the S policy is a

recommendable substitute for the (s, k) policy at a high c.v. level. This is

also consistent with the finding of Kiesmüller et al. [59] that the performance
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of the one-parameter policy is close to the performance of the two-parameter

policy when there is no batch ordering constraint.

G5 p/(h+p) E(D)=10 E(D)=15 E(D)=20 E(D)=30 E(D)=40

Normal 0.80 2.07 10.82 0.00 20.42 0.00
c.v.=0.1 0.85 2.73 10.76 0.00 15.35 0.00

0.90 2.88 10.25 0.00 10.05 0.00
0.95 1.36 7.84 0.36 4.66 0.00

Normal 0.80 0.00 1.25 0.13 7.75 0.09
c.v.=0.2 0.85 0.00 1.53 0.15 6.34 0.07

0.90 0.00 1.60 0.09 4.87 0.05
0.95 0.00 1.64 0.02 3.40 0.03

Normal 0.80 0.00 0.02 0.69 5.35 1.14
c.v.=0.3 0.85 0.00 0.02 0.53 4.64 1.06

0.90 0.00 0.01 0.49 4.00 0.90
0.95 0.00 0.01 0.31 3.05 0.68

Normal 0.80 0.00 0.16 1.37 4.33 1.86
c.v.=0.4 0.85 0.00 0.12 1.19 3.86 1.67

0.90 0.00 0.10 0.88 3.36 1.48
0.95 0.00 0.04 0.64 2.70 1.22

Poisson 0.80 0.00 0.01 0.26 7.86 0.00
0.85 0.00 0.01 0.29 6.23 0.00
0.90 0.00 0.01 0.21 5.01 0.00
0.95 0.00 0.00 0.10 3.22 0.00

Table 4.7: Comparison of the (s, k) policy and the S policy at Q = 5

We next study the effect of the E(D). To better illustrate the effect of

E(D), we plot in Figure 4.1 the long-run average costs (normalized by the

global minimum of C(y)) of the (s, k) policy as a function of E(D) under

different levels of c.v. with a fixed M = 30. Figure 4.1 illustrates that for a

given M ,

• when E(D) is relatively small, e.g., less thanM , a lower level of demand

variation leads to a higher decreasing rate of average costs as E(D)

increases.
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• when E(D) is relatively large, e.g., larger than M , the average cost

is not affected significantly by the different demand variation levels as

E(D) increases.

Figure 4.1: The impact of E(D) in the (s, k) policy with p/(h+ p) = 0.9 and
Q = 5

The reason for this is that as E(D) increases, the constraint of the mini-

mum order quantity becomes looser and looser. Similar results can be drawn

for the S policy. We plot the results for the S policy in Figure 4.2.

Before ending this section, we must point out that the case of ∆ < Q can

appear, although ∆ ≥ Q in most of our numerical examples. For example,

for normally distributed demand with E(D) = 100 and c.v. = 1, we can get

the optimal ∆ = 1 and the optimal k = 183, when M = 8, Q = 4, and

p/(h+ p) = 0.8.

4.7 Conclusion

In this work, we design an algorithm for a heuristic two-parameter policy, the

(s, k) policy, to control stochastic inventories with minimum order quantity

and batch size constraints. Applying a Markov chain approach, we compute
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Figure 4.2: The impact of E(D) in the S policy with p/(h+ p) = 0.8 and Q
= 3

the system costs and provide recursive algorithms to optimize the policy

under the long-run average cost criterion. We also develop the computational

procedure for a simpler policy, the S policy, which is motivated by the (R,Q)

policy in batch ordering and is a special case of the (s, k) policy. Numerical

studies are conducted to demonstrate the effectiveness of these two policies

with respect to the optimal policy and the (s, S) policy for both normally and

Poisson distributed demand. Overall, the S policy has a good performance

close to that of the (s, k) policy; only in a few cases with small demand

variation, the latter outperforms the former significantly.

For future directions, one may try to develop some heuristic policies with

easily computable performance bounds. These performance bounds provide

a worst-case optimal gap between the optimal policy and the heuristics, and

thus are of great importance. Moreover, the performance bounds are allowed

to depend on the optimal solutions of single-stage models, which can be easily

computed as shown in Zheng [97]. Second, one try to study multi-echelon

inventory systems with a MOQ constraint. A possible start-up model is a

two-stage serial inventory system with a MOQ requirement at the upstream
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installation, which is the basis of distribution or even more general systems.
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Appendix A

Proofs

Proof of Lemma 2.1. Note that it is optimal to let

αvH + (1− α)vL − pD = 0,

i.e., to provide zero surplus for customers. This is because the objective

function is increasing in pD. Then we have

pD = αvH + (1− α)vL.

Since πD = pDλ−K, we have

πD = (αvH + (1− α)vL)λ−K.

Therefore, the optimal price is p∗D = αvH + (1− α)vL and the optimal profit

is π∗D(λ) = [αvH + (1− α)vL]λ−K.

Proof of Lemma 2.2. The firm can make a nonnegative profit by adopting

the disclosure strategy, if and only if π∗D = π∗D(λ) = (αvH+(1−α)vL)λ−K ≥

0, i.e., λ ≥ λ̃D, where λ̃D is defined as λ̃D = K
αvH+(1−α)vL

; otherwise when

λ < λ̃D, π∗D < 0, and the firm should not enter the market.

Proof of Lemma 2.3. Recall that if the customer purchases the service,

the samples he obtained must satisfy αi(N) ≥ p−vL
vH−vL

Therefore, if a customer
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obtains N samples and decides to purchase the service, the proportion of H

samples must be at least p−vL
vH−vL

. In other words, among the N samples the

customer obtained, the number of H samples should be at least N p−vL
vH−vL

.

Because the number is an integer, this means the number of H samples

should be larger than bN p−vL
vH−vL

− εc. Therefore, if the number of H samples

is larger than bN p−vL
vH−vL

− εc, the customer purchases the service; otherwise,

the customer would not purchase the service.

Proof of Lemma 2.4. (i) Observing

γ(p) = 1−
bN p−vL

vH−vL
−εc∑

n=0

B(n,N, α),

it follows that it is optimal for the firm to set the price p such that N p−vL
vH−vL

is an integer due to the floor function. This is because if the term is not an

integer, the firm can make more profits by increasing p until the term is an

integer with γ unchanged. Therefore, N p−vL
vH−vL

must be an integer. Denote

this integer as j, i.e., j = N p−vL
vH−vL

, and it follows that p∗ = vL + j
N

(vH −

vL), j = 0, 1, 2, . . . , N .

(ii) For any given j, we know that the optimal price p∗j for this j must satisfy

p∗j = vL + j
N

(vH − vL). By substituting the preceding formula in π(p) = γpλ,

then the profit function for this particular j, π∗j , can be expressed as π∗j =

[vL+ j
N

(vH−vL)]γjλ. We do the same computation for each j = 0, 1, 2, . . . , N ,

and find the largest one (denoted as π∗j∗) among all π∗j . If π∗j∗ ≥ 0, then the

optimal price p∗ is p∗j∗ .

Proof of Proposition 2.1. We consider two special cases of the nondisclo-

sure strategy.

Case 1: suppose j = 0. In this case, limα→0 π
∗
j −π∗D = K ≥ 0, i.e., the firm is

better off by adopting the nondisclosure strategy. Because of the continuity

π∗0 − π∗D, it follows that there exists a positive α such that it is optimal to
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adopt the nondisclosure strategy for α ∈ [0, α].

Case 2: suppose j = N . In this case, we have limα→1 π
∗
N − π∗D = K ≥ 0. Be-

cause of the continuity π∗N − π∗D, it follows that there exists a positive α < 1

such that it is optimal to adopt the nondisclosure strategy for α ∈ [α, 1].

This completes the proof.

Proof of Corollary 2.3. This result directly follows from Proposition 2.1

and Lemma 2.6. Recall that Proposition 2.1 states that it is optimal to

adopt the nondisclosure strategy when α is small ([0, α]) or large ([α, 1]),

and Lemma 2.6 states that j∗(α) is nondecreasing in α. Therefore, it is

optimal to adopt the nondisclosure strategy with j∗ = 0 for α ∈ [0, α0], and

the nondisclosure strategy with j∗ = N for α ∈ [αN , 1].

Proof of Lemma 2.7. This is due to the fact αi(N)→ α as N →∞ based

on the law of large numbers.

Proof of Proposition 2.2. π∗H ≥ π∗L, if and only if α ≥ vL
vH

. Based on this,

we next discuss the optimal profits under two cases: α ≥ vL
vH

and α < vL
vH

.

(1) When α ≥ vL
vL
, we only need to compare π∗H and π∗D. π∗D − π∗H = (1 −

α)vLλ−K. If α ≤ 1− K
vLλ

, we have π∗D ≥ π∗H and the disclosure strategy is

optimal; otherwise, the nondisclosure strategy (attracting H-type customers

only) is optimal.

(2) When α < vL
vH

, we only need to compare π∗L and π∗D. π∗D − π∗L = α(vH −

vL)λ −K. If α ≥ K
(vH−vL)λ

, we have π∗D ≥ π∗L and the disclosure strategy is

optimal; otherwise, the nondisclosure strategy (attracting all customers) is

optimal.
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Therefore, we have

π∗ =



π∗L, if α < min{ K
(vH−vL)λ

, vL
vH
};

π∗D, if K
(vH−vL)λ

< α < vL
vH

;

π∗D, if vL
vH

< α < 1− K
vLλ

;

π∗H , if α > max{ vL
vH
, 1− K

vLλ
}.

Because the relationships among K
(vH−vL)λ

, vL
vH

and 1− K
vLλ

are uncertain, we

need to consider each possible scenario.

Case 1: K
(vH−vL)λ

< vL
vH

< 1− K
vLλ

π∗ =


π∗L, if α < K

(vH−vL)λ
;

π∗D, if K
(vH−vL)λ

< α < 1− K
vLλ

;

π∗H , if α > 1− K
vLλ

.

Case 2: vL
vH

< K
(vH−vL)λ

< 1− K
vLλ

π∗ =


π∗L, if α < vL

vH
;

π∗D, if vL
vH

< α < 1− K
vLλ

;

π∗H , if α > 1− K
vLλ

.

Case 3: K
(vH−vL)λ

< 1− K
vLλ

< vL
vH

π∗ =


π∗L, if α < K

(vH−vL)λ
;

π∗D, if K
(vH−vL)λ

< α < vL
vH

;

π∗H , if α > vL
vH

.
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Case 4: vL
vH

< 1− K
vLλ

< K
(vH−vL)λ

π∗ =


π∗L, if α < vL

vH
;

π∗D, if vL
vH

< α < 1− K
vLλ

;

π∗H , if α > 1− K
vLλ

.

Case 5: 1− K
vLλ

< vL
vH

< K
(vH−vL)λ

π∗ =

 π∗L, if α < vL
vH

;

π∗H , if α > vL
vH

.

Case 6: 1− K
vLλ

< K
(vH−vL)λ

< vL
vH

π∗ =


π∗L, if α < K

(vH−vL)λ
;

π∗D, if K
(vH−vL)λ

< α < vL
vH

;

π∗H , if α > vL
vH

.

We can find that in most cases (except case 5), α is divided into three seg-

ments, and the firm should adopt the disclosure strategy when α is at a

medium level. In all cases, even in case 5, when α is small (large), the firm

should adopt the nondisclosure strategy to attract all customers (H-type

customers only).

Proof of Lemma 2.8. Recall that when the customers do have learning

opportunities, the optimal profit under the nondisclosure strategy is π∗ND =

max{maxj=0,1,2,...,N π
∗
j , 0} where πj = [vL + j

N
(vH − vL)]γjλ for any j =

0, 1, 2, . . . , N . In particular, π0 = vLλ. Therefore, we always have π∗ND ≥

vLλ.

Based on the relationship of π∗D, π∗ND and vLλ, we consider the following

possible scenarios. If π∗D ≥ π∗ND and π∗D ≥ vLλ, then we have πCL = πNL =

π∗D and δ = 0. If π∗ND ≥ π∗D ≥ vLλ, then δ = (π∗ND − π∗D)/π∗D. Because
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π∗D is decreasing in K, δ is increasing in K. If π∗ND ≥ vLλ ≥ π∗D, then

δ = (π∗ND − vLλ)/(vLλ), which is independent of K.

Proof of Proposition 2.3. For the new expressions of some notations, e.g.,

π∗D, π∗H ,π∗L, see Appendix B. Under the condition αλ(vH − vL) ≥ K, since

π∗L ≤ π∗D, we only need to compare π∗H and π∗D. π∗H − π∗D = (vL − c)λα −

2
√
chλ
√
α+ (c− vL)λ+ 2

√
hcλ+K. Note that this a quadratic function of

√
α. The discriminant ∆ for the equation

π∗H − π∗D = (vL − c)λα− 2
√
chλ
√
α + (c− vL)λ+ 2

√
hcλ+K = 0 (A.1)

is ∆ = (−2
√
hcλ)2 − 4(vL − c)λ[−(vL − c)λ + 2

√
hcλ + K] = 4{[vL − c)λ−

√
hcλ]2 − (vL − c)λK}.

Based on the sign of ∆ and the value of
√
λ, we next divide λ into four sets:

S1={λ|
√
hc−
√

(vL−c)K
vL−c

<
√
λ <
√
λ1}, S2={λ|

√
λ ≤

√
hc−
√

(vL−c)K
vL−c

}, S3={λ|
√
λ1 <

√
λ <

√
λ2}, and S4={λ|

√
λ ≥

√
λ2}.

Note that λ ∈ S1, if and only if ∆ < 0; otherwise if λ ∈ {S2 ∪ S3 ∪ S4},

∆ ≥ 0.

Case 1: λ ∈ S1. In this case, we have ∆ < 0, and hence equation (A.1) has

no real solution. It follows that π∗H ≥ π∗D in this case, and the firm should

adopt nondisclosure strategy.

In the following three cases, λ ∈ {S2 ∪ S3 ∪ S4} and we have ∆ ≥ 0.

Equation (A.1) has two rootsx1 =

√
hcλ−

√
[(vL−c)λ−

√
hcλ]2−(vL−c)Kλ

(vL−c)λ
and x2 =

√
hcλ+

√
[(vL−c)λ−

√
hcλ]2−(vL−c)Kλ

(vL−c)λ
. Note that x1 ≤ x2.

Case 2: λ ∈ S2. If hc < (vL − c)K, then it is trivial to consider this case.

We next consider the scenario hc ≥ (vL − c)K. Note that in this case, we
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have

√
λ ≤

√
hc−

√
(vL − c)K

vL − c

⇒(vL − c)λ <
√
hcλ

⇒x1 ≥

√
hcλ−

√
[(vL − c)λ−

√
hcλ]2

(vL − c)λ
= 1

Hence, Equation (A.1) has no solutions located in the interval (0,1). In

other words, π∗H ≥ π∗D for α ∈ (0, 1) and hence the firm should adopt the

nondisclosure strategy.

In the following two cases, we have
√
λ ≥

√
λ1 ≥

√
hc

vL−c
, and thus x2 ≤√

hcλ+

√
[(vL−c)λ−

√
hcλ]2

(vL−c)λ
= 1. We proceed to discuss the sign of x1.

Case 3: λ ∈ S3. In this case, we have
√
λ1 ≤

√
λ <
√
λ2, and it follows that

0 < x1 ≤ x2 ≤ 1. Therefore, if x2
1 < α < x2

2, we have π∗H < π∗D, and the

voluntary disclosure strategy is better; otherwise the nondisclosure strategy

is better.

Case 4: λ ∈ S4. In this case, we have x1 ≤ 0 < x2 ≤ 1. Therefore, if

α < x2
2, we have π∗H < π∗D, and the firm should adopt the voluntary disclosure

strategy; otherwise, the firm should adopt the nondisclosure strategy.

Proof of Lemma 3.2. Recall that Gi(y) = E[hi(y − Di(t, t + Li])
+ +

(h0 + pi)(y −Di(t, t+ Li])
−]. We define

Gd
i (y) = hi(y − λiLi)+ + (h0 + pi)(y − λiLi)−,

for any i = 1, 2, . . . , N . Note that Gd
i (y) is the single-stage cost of Retailer

i assuming deterministic demands. It follows form Jensen’s inequality that

for any y,

Gd
i (y) ≤ Gi(y),
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which means that the inventory costs calculated in the deterministic model

underevaluate the actual inventory cost with stochastic demands.

We define

Gid
i (y) =


C∗i if y ≤ λiLi − C∗i /(h0 + pi),

Gd
i (y) otherwise,

and

G0d
i (y) = Gd

i (y)−Gid
i (y) = (h0 + pi)(λiLi − C∗i /(h0 + pi)− y)+

=


Gd
i (y)− C∗i if y ≤ λiLi − C∗i /(h0 + pi),

0 otherwise.

Note that Gd
i (λiLi −C∗i /(h0 + pi)) = C∗i = Gi(r

∗
i ). It follows that λiLi −

C∗i /(h0 + pj) ≤ r∗i . Therefore, we have that for any y,

G0d
i (y) ≤ G0

i (y).

Let D0 denote the total demand over (0, L0). It follows that E[D0] = λ0L0.

We have

G0(y) =E[h0(y −D0) + min
yi:

∑N
i=1 yi≤y−D0

N∑
i=1

G0
i (yi)]

≥h0(y − λ0L0) + min
yi:

∑N
i=1 yi≤y−λ0L0

N∑
i=1

G0
i (yi)

≥h0(y − λ0L0) + min
yi:

∑N
i=1 yi≤y−λ0L0

N∑
i=1

G0d
i (yi),

(A.2)

where the first inequality follows from Jensen Inequality and the second in-

equality follows from G0d
i (y) ≤ G0

i (y). Let j = arg mini=1,2,...,N pi and y∗i , i =

1, 2, . . . , N, denote the value at which minyi:
∑N

i=1 yi≤y−λ0L0

∑N
i=1G

0d
i (yi) at-

tains its optimal value. Note that G0d
i (y) = (h0+pi)(λiLi−C∗i /(h0+pi)−y)+
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is strictly decreasing in y ∈ (−∞, λiLi − C∗i /(h0 + pi)] and equals to 0 in

y ∈ [λiLi−C∗i /(h0 + pi),∞). It follows that y∗i = λiLi−C∗i /(h0 + pi) for any

i 6= j and y∗j = y − λ0L0 −
∑

i 6=j y
∗
i . Therefore,

G0(y) ≥h0(y − λ0L0) + min
yi:

∑N
i=1 yi≤y−λ0L0

N∑
i=1

G0d
i (yi)

=h0(y − λ0L0) +G0d
j (y∗j )

=h0(y − λ0L0) + (h0 + pj)(
N∑
i=1

λiLi − C∗i /(h0 + pi)− (y − λ0L0))+

≡Gd
0(y).

(A.3)

Note that Gd
0(y) is a convex function with minimal value h0

∑N
i=1(λiLi −

C∗
i

h0+pi
). We next consider a single-stage inventory system with setup cost

K0 and inventory cost rate Gd
0(y). It can easily be seen that the optimal

cost of this system, denoted by Gd
0(rd∗0 ), is not greater than G0(r∗0), i.e.,

G0(r∗0) ≥ Gd
0(rd∗0 ). It can be further verified that Gd

0(rd∗0 ) = h0

∑N
i=1(λiLi −

C∗
i

h0+pi
)+
√

2λ0K0h0pj
h0+pj

. Therefore, under the assumption h0

∑N
i=1(λiLi− C∗

i

h0+pi
)+√

2λ0K0h0pj
h0+pj

> 0, we have C∗0 = G0(r∗0) > 0.

Proof of Lemma 3.3. (i) We prove the lemma by contradiction. Sup-

pose there exists two irregular intervals for Retailer i over the cycle [T jI , T
j+1
I ).

We denote by [T̂ j,1i , T̃ j,1i ) the first irregular shipment interval. As there exists

at least one shipment after the first irregular shipment interval, the ware-

house must have some on-hand inventory after the first irregular shipment

interval. It implies that under the modified echelon (r,Q) policy, the ware-

house has enough inventory to raise Retailer i’s inventory position to ri +Qi

at time T̂ j,1i , that is, IPi(T̂ j,1i ) = ri + Qi. On the other hand, at the end of

the first irregular interval (once Retailer i’s inventory position reaches ri),

the warehouse also has on-hand inventory to raise the inventory position of

Retailer i above ri. That is, IP−i (T̃ j,1i ) = ri. It follows from the definition of

131



regular shipment interval that the first irregular shipment interval is indeed

a regular shipment interval. Therefore, there exists at most one irregular

shipment for Retailer i in each cycle, whether the cycle is empty or not.

(ii) Consider the last shipment from warehouse to retailers in a specified

cycle. That is, the warehouse has enough inventory to fulfill retailers’ orders

before the last shipment which in turn implies that retailers’ inventory posi-

tion after these shipments should be ri +Qi. In short, the shipments before

the last shipment are either regular or type I irregular shipments. However,

for the last shipment, the warehouse may not have enough inventory to raise

retailer’s inventory position to the target one. Then, that retailer will ex-

perience a type II irregular shipment interval. In summary, there exists at

most one type II irregular shipment interval over one cycle.

Proof of Lemma 3.4. By Remark 3.1, we first construct a cost bound,

excluding the setup costs in type II irregular shipment intervals, in terms of

IPi(t) and Ci(ri, Qi) as follows. If Retailer i is in a regular shipment inter-

val, then we charge Ci(ri, Qi); if Retailer i is in a type I irregular shipment

interval, then we charge max{Gi(IPi(t)), Ci(ri, Qi)}; if Retailer i is in a type

II of irregular shipment interval, then we charge Gi(IPi(t)).

Let OI+
0 (t) denote the on-hand inventory at the warehouse at time t. By

the definition, IL0(t) = OI+
0 (t) +

∑N
j=1 IPj(t). Under the modified echelon

(r,Q) policy, we have IPj(t) ≤ rj + Qj for any j = 1, 2, . . . , N . It follows

that

OI+
0 (t) + IPi(t) = IL0(t)−

∑
j 6=i

IPj(t) ≥ IL0(t)−
∑
j 6=i

(rj +Qj). (A.4)

We prove the result by considering the ensuing two scenarios.

Scenario I: IL0(t)−
∑

j 6=i(rj +Qj) > ri. By (A.4), we have ri < OI+
0 (t) +

IPi(t). If OI+
0 (t) = 0, then it follows that ri < IPi(t) ≤ ri + Qi. Now
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consider the case with OI+
0 (t) > 0. In this case, the warehouse has excess

inventory after shipment to retailers, which implies that the inventory po-

sition of Retailer i must be above ri, i.e., ri < IPi(t) ≤ ri + Qi. In each

case, we have ri < IPi(t) ≤ ri + Qi, but Retailer i could be in either a reg-

ular or an irregular shipment interval. Therefore, to obtain an upper bound

on Γ̂i(IL0(t)), we charge the larger one between expected cost rates of the

regular and irregular shipment intervals. That is, the cost of Retailer i ex-

cluding the setup cost in a type II irregular shipment interval, is no more

than max{Gi(IPi(t)), Ci(ri, Qi)}. Moreover, by the definition of wi, it fol-

lows that max{Gi(IPi(t)), Ci(ri, Qi)} ≤ max{Gi(wi), Ci(ri, Qi)}. Therefore,

in this scenario, Γ̂i(IL0(t)) ≤ max{Gi(wi), Ci(ri, Qi)}.

Scenario II: IL0(t) −
∑

j 6=i(rj + Qj) ≤ ri. If ri < IPi(t) ≤ ri + Qi,

then as mentioned above, the cost of Retailer i excluding the setup cost in

a type II irregular shipment interval, should be bounded by Γ̂i(IL0(t)) ≤

max{Gi(wi), Ci(ri, Qi)}. Otherwise, if IPi(t) ≤ ri, then we have OI+
0 (t) =

0 and Retailer i must be in an irregular shipment interval, but could be

in either a type I or a type II irregular shipment interval. As a result,

Γ̂i(IL0(t)) ≤ max{Gi(IPi(t)), Ci(ri, Qi)}. Recall that IL0(t) −
∑

j 6=i(rj +

Qj) ≤ OI+
0 (t) + IPi(t), thus, IL0(t) −

∑
j 6=i(rj + Qj) ≤ IPi(t) ≤ ri. Due

to the convexity of Gi(·), we can obtain that Gi(IPi(t)) ≤ max{Gi(IL0(t) −∑
j 6=i(rj +Qj)), Gi(ri)} ≤ max{Gi(IL0(t)−

∑
j 6=i(rj +Qj)), Gi(wi)}. There-

fore, if IL0(t) −
∑

j 6=i(rj + Qj) ≤ ri, we have Γ̂i(IL0(t)) ≤ max{Gi(IL0(t) −∑
j 6=i(rj +Qj)), Gi(wi), Ci(ri, Qi)}.

Proof of Lemma 3.5. We first consider the replenishment cycle. Be-

cause the warehouse faces an ample supply, there are Q0 units of demand

in total over any cycle [T j0 , T
j+1
0 ). As the demand arrives following a homo-

geneous Poisson process with rate λ0, the expectation of the length of any

replenishment cycle j at the warehouse is E[T j+1
0 − T j0 ] = Q0/λ0. Therefore,
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the result holds for the warehouse.

Now consider the depletion cycle. By the definition of T j0 , the order in

the jth cycle will arrive at the warehouse at time T j0 +L0. Denote by ∆tjI the

time lag between the arrival time at the warehouse and the receiving time of

Installation I, i.e., ∆j
I ≡ T jI−(T j0 +L0). ∆tjI can be understood as the sojourn

time of the 1st unit in the jth order at the warehouse. Clearly, ∆j
I ≥ 0. By

the definition of modified echelon (r,Q) policy, we know that IP−0 (T j0 ) = r0

and IP0(T j0 ) = r0 +Q0. It follows that IL0(T j0 +L0) = IP0(T j0 )−D0(T j0 , T
j
0 +

L0] = r0 +Q0−D0(T j0 , T
j
0 +L0]. At time T j0 +L0 and before units contained

in the warehouse’s jth order are sent to Installation I, there are at most

(r0−D0(T j0 , T
j
0 +L0]−

∑N
i=1 ri)

+ units in addition to ri units in Retailer i’s

inventory position. Let t(x) ≡ maxi=1,2,...,N inf{t ≥ 0|Di(0, t] ≥ x}. Thus,

for all j, we have

0 ≤ ∆j
I ≤ t(r0 −D0(T j0 .T

j
0 + L0]−

N∑
i=1

ri)
+ ≤ t(r0 −

N∑
i=1

ri)
+. (A.5)

Note that the lower and upper bound on ∆j
I depend only on the policy

parameters. Therefore,

lim
j→∞

E[T j+1
I − T 1

I ]/j

= lim
j→∞

E[(T j+1
0 + L0 + ∆j+1

I )− (T 1
0 + L0 + ∆1

I)]/j

= lim
j→∞

E[T j+1
0 − T 1

0 ]/j + E[∆j+1
I −∆1

I ]/j

= lim
j→∞

E[T j+1
0 − T 1

0 ]/j

=Q0/λ0, (A.6)

where the third equality is a direct result of (A.5) and the last is true because

of E[T j+1
0 −T j0 ] = Q0/λ0 for all j. Therefore, the result also holds for depletion
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cycle.

Proof of Theorem 3.4. By (3.9) and the definition of Ĝi(y) in (3.10),

we obtain

Γ̂I(IL0(t)) ≤ Γ̄I(IL0(t)) =
N∑
i=1

Ĝi(IL0(t)) +
N∑
i=1

Ĉi(ri, Qi). (A.7)

We denote by Γ0(IP0(t)) the total expected cost rate of all installations at

time t when the inventory position of the warehouse is IP0(t), where we ex-

clude the setup costs incurred at the warehouse and the setup costs of type

II irregular shipment intervals incurred at retailers. By such a definition,

Γ0(IP0(t)) constitutes two parts: (i) the inventory holding cost at the ware-

house, and (ii) the total costs at all retailers excluding the setup costs in

type II irregular shipment intervals. Then, according to the cost accounting

scheme (see Definition 3.4.1), we have

Γ0(IP0(t)) =E[h0(IP0(t)−D0)] + E[Γ̂I(IP0(t)−D0)]

≤E[h0(IP0(t)−D0)] + E[
N∑
i=1

Ĝi(IP0(t)−D0)] +
N∑
i=1

Ĉi(ri, Qi)

=Λ0(IP0(t)) +
N∑
i=1

Ĉi(ri, Qi), (A.8)

where the inequality follows from (A.7), and the last equality from (3.11).

Because the warehouse has an unlimited supply form the external sup-

plier, under the modified echelon (r,Q) policy, the inventory position of the

warehouse, IP0(t), is uniformly distributed on {r0+1, . . . , r0+Q0}. Therefore,

by the definition of Γ0(IP0(t)), the long-run average system-wide cost, with

the setup costs of type II irregular shipment intervals incurred at retailers

135



being excluded, can be bounded as follows

1

Q0

[
λ0K0 +

∫ r0+Q0

r0

Γ0(y)dy
]

≤ 1

Q0

[
λ0K0 +

∫ r0+Q0

r0

[Λ0(y) +
N∑
i=1

Ĉi(ri, Qi)]dy
]

=
N∑
i=0

Ĉi(ri, Qi), (A.9)

where the inequality is due to (A.8) and the equality holds true due to (3.12).

Finally, combining (A.9) and Remark 3.3, we can obtain that the long-run

average system-wide cost can be bounded as: C(r,Q) ≤
∑N

i=0 Ĉi(ri, Qi) +

λ0K/Q0.

Proof of Lemma 3.6. As (ri, Qi) = (r∗i , Q
∗
i ), Ĝi(y) is convex and thus,

so is Λ0(y). Since limy→+∞ Ĝi(y) = 0, it follows that limy→+∞ Λ0(y) = ∞.

Moreover, since limy→+∞ Ĝ
′
i(y) = 0 and limy→−∞ Ĝ

′
i(y) = −(h0+pi), we have

limy→+∞ Λ′0(y) = h0 > 0 and limy→−∞ Λ′0(y) = −
∑N

i=1(h0 + pi) + h0 < 0,

and thus limy→−∞ Λ0(y) = ∞. Therefore, Λ0(y) satisfies Assumption 3.3.1.

The convexity of Ĉ0(r0, Q0) follows directly from the result of the single-stage

model in Zheng [97].

Proof of Theorem 3.5. (i) As shown in Lemma 3.1, the lower bound

cost is
∑N

i=0 C
∗
i . As shown in (3.16), the upper bound cost is

∑N
i=1C

∗
i +

C̃∗0 . It follows that the modified echelon (r̂, Q̂) policy in (MERQD) is at

least 1+(C̃∗0 −C∗0)/(
∑N

i=1 C
∗
i +C∗0)-optimal. The last result can be obtained

by showing (
∑N

i=1C
∗
i + C̃∗0)/(

∑N
i=1 C

∗
i + C∗0) ≤ C̃∗0/C

∗
0 . It suffices to show

(
∑N

i=1C
∗
i + C̃∗0)C∗0 ≤ (

∑N
i=1C

∗
i + C∗0)C̃∗0 . Then, the desired result directly

holds because C∗0 ≤ C̃∗0 .

(ii) By (3.13) and the definition of (r̂, Q̂), we have that for any (r0, Q0),

C∗B ≤ C(r̂, Q̂) ≤
∑N

i=1C
∗
i + Ĉ0(r0, Q0) + λ0K/Q0. By Lemma D.1(iii) and
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Lemma D.2(ii), we can obtain that for any (r0, Q0),

C∗B ≤ C(r̂, Q̂) ≤
N∑
i=1

C∗i + Ĉ0(r0, Q0) +
λ0K

Q0

≤
N∑
i=1

C∗i + ε(
Q0

Q̂∗0
)Ĉ∗0 +

λ0C
∗
mQ

∗
m

2λmQ0

. (A.10)

To facilitate the comparison, we select Q0 in (A.10) as follows:

Q̌0 ≡ arg min
Q0

{
ε(
Q0

Q̂∗0
)Ĉ∗0 +

λ0C
∗
mQ

∗
m

2λmQ0

}
=

√
(Q̂∗0)2Ĉ∗0 + (λ0C∗mQ

∗
m)Q̂∗0/λm

Ĉ∗0

= Q̂∗0

√
1 +

λ0C∗mQ
∗
m

λmĈ∗0Q̂
∗
0

.

Replacing Q0 in (A.10) with Q̌0, we can obtain a new upper bound.

C∗B ≤ C(r̂, Q̂) ≤
N∑
i=1

C∗i + Ĉ∗0

√
1 +

λ0C∗mQ
∗
m

λmĈ∗0Q̂
∗
0

. (A.11)

By (A.11), the relative gap between C∗B and C(r̂, Q̂) is bounded as follows:

(C(r̂, Q̂)− C∗B)/C∗B ≤ Ĉ∗0

(√
1 +

λ0C∗mQ
∗
m

λmĈ∗0Q̂
∗
0

− β2

)
/C∗B

≤ Ĉ∗0

(√
1 +

λ0C∗mQ
∗
m

λmĈ∗0Q̂
∗
0

− β2

)
/(β2Ĉ

∗
0 +

N∑
i=1

C∗i )

≤ Ĉ∗0

(√
1 +

λ0C∗mQ
∗
m

λmĈ∗0Q̂
∗
0

− β2

)
/(β2Ĉ

∗
0 + C∗m).

To obtain the desire result, it is sufficient to show the following stronger

statement: for any x1, x2 > 0, x2(
√

1 + λ0x1/(λmx2β1)− β2)/(β2x2 + x1) ≤

α ≡ max{
√

λ0
2β1β2λm

+ 1
4
− 1

2
, 1
β2
− 1}, which is equivalent to α2x2 + [2β2α(1 +

α) − λ0/(λmβ1)]x + β2
2α(α + 2) + β2

2 − 1 ≥ 0 for any x > 0. By verifying

that (1) 2β2α(1 + α)− λ0/(λmβ1) ≥ 0 when α ≥
√

λ0
2β1β2λm

+ 1
4
− 1

2
; and (2)
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β2
2α(α + 2) + β2

2 − 1 ≥ 0 when α ≥ 1
β2
− 1, the desired result ensues.

We prove the alternative bound mentioned in Footnote 2. Following

part (ii), it suffices to show that the quadratic function α2x2 + [2β2α(1 +

α) − λ0/(λmβ1)]x + β2
2α(α + 2) + β2

2 − 1 ≥ 0 when α ≥ λ0/(2(β1β2λm +√
(β2

2 − 1)(β1λm)2 + β1β2λmλ0)) under the condition (β2
2−1)(β1λm)+β2λ0 ≥

0. The bound is then established by verifying that the quadratic function

f(x) = α2x2 +[2β2α(1+α)−λ0/(λmβ1)]x+β2
2α(α+2)+β2

2−1 has a zero dis-

criminant, i.e., ∆ = 4α2(1−λ0β2/(λmβ1))−4αβ2λ0/(λmβ1)+(λ0/(λmβ1))2 =

0.

Proof of Corollary 3.6. It is easy to verify if 2(1/β2− 1) ≥ λ0/(β1λm),

then we have
√

λ0
2β1β2λm

+ 1
4

+ 1
2
≤ 1

β2
, i.e., max{

√
λ0

2β1β2λm
+ 1

4
+ 1

2
, 1
β2
} = 1

β2
.

Proof of Theorem 3.7. Because all retailers are identical, we have

Q∗m = Q∗i and λm = λi in this case. By (A.11), the relative gap between C∗B

and C(r̂, Q̂) is bounded as follows:

(C(r̂, Q̂)− C∗B)/C∗B ≤ Ĉ∗0

(√
1 +

λ0Q∗iC
∗
i

λiQ̂∗0Ĉ
∗
0

− β2

)
/C∗B

= Ĉ∗0

(√
1 +

NQ∗iC
∗
i

Q̂∗0Ĉ
∗
0

− β2

)
/(β2Ĉ

∗
0 +NC∗i ).

To obtain the desire result, it is sufficient to show the following stronger

statement: for any x1, x2 > 0, x2(
√

1 + x1/(x2β1) − β2)/(β2x2 + x1) ≤ α ≡

max{
√

1
2β1β2

+ 1
4
− 1

2
, 1
β2
− 1}, which is equivalent to α2x2 + [2β2α(1 + α)−

1/(β1)]x + β2
2α(α + 2) + β2

2 − 1 ≥ 0 for any x > 0. By verifying that (1)

2β2α(1 + α) − 1/(β1) ≥ 0 when α ≥
√

1
2β1β2

+ 1
4
− 1

2
; and (2) β2

2α(α + 2) +

β2
2 − 1 ≥ 0 when α ≥ 1

β2
− 1, the desired result ensues.

Proof of Theorem 3.8. It follows from Theorem 3.5 that to prove

asymptotic optimality of the modified echelon (r,Q) policy, it is sufficient to

first show the following statements: (i) limK0/Km→∞ β1 =∞ and limK0/Km→∞ β2 =
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1; (ii) limh0/hm→0 β1 =∞ and limh0/hm→0 β2 = 1.

(i) Let ri(Qi) = arg minri Ci(ri, Qi) for i = 0, 1, 2, . . . , N . Define Ai(Qi) ≡

QiGi(ri(Qi)) −
∫ Qi

0
Gi(ri(y))dy. By Lemma D.1, Ai(Qi) is a continuous

and strictly increasing function such that Ai(Q∗i ) = λiKi and Ai(0) = 0.

Let A−1
i (x) be the inverse function of Ai(Qi). Then, Q∗i = A−1

i (λiKi)

and A−1
i (0) = 0. Similarly, let r̂0(Q0) = arg minr0 Ĉ0(r0, Q0) and define

Â0(Q0) ≡ Q0Λ0(r̂0(Q0))−
∫ Q0

0
Λ0(r̂0(y))dy. Let Â−1

0 (x) be the inverse func-

tion of Â0(Q0). Then, Q̂∗0 = Â−1
0 (λ0K0) and Â−1

0 (0) = 0. Let γ = Km/K0.

We have

lim
K0/Km→∞

β1 = lim
K0/Km→∞

Â−1
0 (λ0K0)

A−1
m (λmKm)

= lim
γ→0

Â−1
0 (λ0K0)

A−1
m (λmγK0)

=
Â−1

0 (λ0K0)

A−1
m (λmK0)

lim
γ→0

A−1
m (λmK0)

A−1
m (λmγK0)

=∞,

where the last equality follows form the fact that A−1
m (x) is continuous and

A−1
m (0) = 0.

It remains to show limK0/Km→∞ β2 = 1. Recall that A0(Q) and Â0(Q) are

both increasing convex functions. Let r(Q0) = arg minr0 C0(r0, Q0). Define

H0(Q) ≡ G0(r(Q)) and Ĥ0(Q) ≡ Λ0(r̂0(Q)). It is easy to see that A′0(Q) =

QH0(Q) and Â′0 = QĤ0(Q). Moreover, because G0(y) and Λ(y) satisfy

Assumption 3.3.1, by Zheng [97], H0(Q) and Ĥ0(Q) are increasing convex

functions with asymptotic slope −ab/(a − b) as Q → ∞, where parameters

a and b are defined in Assumption 3.3.1. That is, we have

lim
Q→∞

H ′0(Q) =
h0p

h0 + p
, (A.12)

lim
Q→∞

Ĥ ′0(Q) =
h0[
∑N

i=1(pi + h0)− h0]∑N
i=1(pi + h0)

, (A.13)

where p = mini=1,...,N pi. With the above analysis, under the condition Km >
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0, we can obtain

lim
K0/Km→∞

β2 = lim
γ→0

H0[A−1
0 (λ0Km/γ)]

Ĥ0[Â−1
0 (λ0Km/γ)]

= lim
γ→0

H ′0[A−1
0 (λ0Km/γ)]

dA−1
0 (λ0Km/γ)

dγ

Ĥ ′0[Â−1
0 (λ0Km/γ)]

dÂ−1
0 (λ0Km/γ)

dγ

= lim
γ→0

H ′0[A−1
0 (λ0Km/γ)]

Ĥ ′0[Â−1
0 (λ0Km/γ)]

lim
Q→∞

Â′0(Q)

A′0(Q)

= lim
γ→0

H ′0[A−1
0 (λ0Km/γ)]

Ĥ ′0[Â−1
0 (λ0Km/γ)]

lim
Q→∞

QĤ ′0(Q)

QH ′0(Q)

= 1,

where the second equality results from the L’Hospital’s Rule, the third from

the rules for derivative of inverse functions, and the last from (A.12) and

(A.13).

(ii) Let ξ ≡ h0/hm. Then Gm(y) can be written as Gm(y) = E[hm(y −

Dm(t, t + Lm]) + (hm + ξhm + pm)(y −Dm(t, t + Lm])−]. It follows that for

any pm > 0 and hm > 0, Q∗m converges to a constant when ξ → 0. Then

we proceed to show that limξ→0 Q̂
∗
0 = ∞. Let H̄0(Q) ≡ h0[

∑N
i=1(pi+h0)−h0]∑N
i=1(pi+h0)

Q,

Ā0(Q) ≡ h0[
∑N

i=1(pi+h0)−h0]

2
∑N

i=1(pi+h0)
Q2, Q̄0 ≡

√
2λ0K0

∑N
i=1(pi+h0)

h0[
∑N

i=1(pi+h0)−h0]
. Then, it is easy

to check that Ā′0 = QH̄ ′0(Q) and Ā0(Q̄0) = λ0K0. Because Ĥ0(Q) is an

increasing convex functions, by (A.13), we have Ĥ ′0(Q) ≤ h0[
∑N

i=1(pi+h0)−h0]∑N
i=1(pi+h0)

=

H̄ ′0(Q), which implies that Â′0(Q) ≤ Ā′0(Q). Note that Â0(0) = Ā0(0) = 0.

Therefore, we must have Â0(Q) ≤ Ā0(Q).We then have Â0(Q̄0) ≤ Ā0(Q̄0) =

λ0K0. Because Â0(Q̂∗0) = λ0K0 and Â0(Q) is an increasing function, we have

Q̂∗0 ≥ Q̄0. On the other hand, because K0 > 0 and

lim
ξ→0

Q̄0 =

√
2λ0K0

∑N
i=1(pi + ξhm)

ξhm[
∑N

i=1(pi + ξhm)− ξhm]
=∞, (A.14)

we have limξ→0 Q̂
∗
0 =∞. Therefore, we have limξ→0 β1 =∞.
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It remains to show limξ→0 β2 = 1. Recall that we always have C∗0 ≤

Ĉ∗0 ≤ Ĉ∗0(r∗0, Q
∗
0), where the second equality follows from the definition of Ĉ∗0 .

Therefore, it suffices to show limξ→0 Ĉ
∗
0(r∗0, Q

∗
0) = limξ→0C

∗
0 . Following the

same logic of showing limξ→0 Q̂
∗
0 =∞, one can easily prove limξ→0Q

∗
0 =∞.

Then we have

lim
ξ→0

C∗0

Ĉ∗0(r∗0, Q
∗
0)

= lim
ξ→0

H0(Q∗0)

Ĥ0(Q∗0)
= lim

ξ→0

H ′0(Q∗0)

Ĥ ′0(Q∗0)
= lim

ξ→0

ξhmp

ξhm+p

ξhm[
∑N

i=1(pi+ξhm)−ξhm]∑N
i=1(pi+ξhm)

= 1,

(A.15)

where the second equality holds by the L’Hospital’s Rule, and the third holds

due to (A.12) and (A.13).

(iii) The proof emulates that of (ii). Let µ ≡ h0/pm. Then Gm(y) can

be written as Gm(y) = E[hm(y − Dm(t, t + Lm]) + (hm + µpm + pm)(y −

Dm(t, t + Lm])−]. It follows that for any pm > 0 and hm > 0, Q∗m converges

to a constant when µ → 0. In addition, (A.14) in this case is expressed as

limµ→0 Q̄0 =

√
2λ0K0

∑N
i=1(pi+µpm)

µpm[
∑N

i=1(pi+µpm)−µpm]
= ∞. Therefore, we have limµ→0 Q̂

∗
0 =

∞ and limµ→0 β1 = ∞. To see limµ→0 β2 = 1, note that (A.15) in this case

is expressed as

lim
µ→0

C∗0

Ĉ∗0(r∗0, Q
∗
0)

= lim
µ→0

µpmp

µpm+p

µpm[
∑N

i=1(pi+µpm)−µpm]∑N
i=1(pi+µpm)

= 1.

Proof of Proposition 4.1. C(·) is convex in k for each i, so is their

sum. Therefore, L(∆, k) is convex in k for a given ∆.

Proof of Proposition 4.2. Based on the definitions of k∗1 and y∗, we

prove the proposition by contradiction. First, assume k∗1 > y∗. Because

C(y) is non-decreasing when y > y∗, C(k∗1) > C(y∗), and hence C(k∗1 + i) >

C(y∗+i), ∀i ∈ [1,M ]. Therefore, we should have L(∆, k∗1) =
∑M

i=1 πiC(k∗1+
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i) >
∑M

i=1 πiC(y∗+ i) = L(∆, y∗). This contradicts the definition of k∗1, and

hence k∗1 ≤ y∗. Second, assume k∗1 = y∗. Then L(∆, k∗1) =
∑M

i=1 πiC(k∗1 +

i) =
∑M

i=1 πiC(y∗ + i) >
∑M

i=1 πiC(y∗ + i − 1) =
∑M

i=1 πiC(k∗1 + i − 1) =

L(∆, k∗1 − 1). This also contradicts the definition of k∗1. We thus now have

k∗1 < y∗. Similarly, we can prove that y∗ −M ≤ k∗1 again by contradiction.

Assume that k∗1 < y∗ −M . Because C(y) is convex and y∗ is the minimizer

of C(y), it can be easily seen that C(k∗1) > C(y∗ −M) > C(y∗). Therefore,

C(k∗1 +i) > C(y∗−M+i), ∀i ∈ [1,M ], and hence L(∆, k∗1) > L(∆, y∗−M).

This means that k∗1 is not optimal, which contradicts the definition of k∗1.

Therefore, we have y∗ ≤ k∗1 +M .

Proof of Proposition 4.3. Given ∆ < Q, M +Q−∆ is fixed, and

L(∆, k) is convex, because it is the summation of several convex functions

πiC(k + i).

Proof of Proposition 4.4. By contradiction, assume k∗2 ≥ y∗, then

C(k∗2+i) > C(k∗2+i−1),∀i ∈ [1,M+Q−∆], and L(∆, k∗2) =
∑M+Q−∆

i=1 πiC(k∗2+

i) >
∑M+Q−∆

i=1 πiC(k∗2 + i − 1) = L(∆, k∗2 − 1). This contradicts the def-

inition of k∗2, so k∗2 < y∗. Now, assume y∗ − M − Q + ∆ > k∗2, then

C(k∗2 + i) > C(y∗ −M − Q + ∆ + i),∀i ∈ [1,M + Q − ∆]. Then we have

L(∆, k∗2) > L(∆, y∗ −M −Q + ∆), which contradicts the definition of k∗2.

Therefore, y∗ −M −Q+ ∆ ≤ k∗2 < y∗.
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Appendix B

The Unraveling Result

Recall that if the firm adopts the disclosure strategy, it can earn a profit

π∗D(λ). Suppose π∗D(λ) ≥ 0, i.e., λ is large enough that the firm can make

nonnegative profits under the disclosure strategy.

We next focus on the optimal firm profit under the nondisclosure strat-

egy. Grossman [40] shows that “consumers with rational expectations will

assume that the monopolist is of the worst possible quality consistent with his

disclosure when he makes less than a full disclosure.” Following the existing

literature, if the firm does not disclose its quality information, customers

rationally assume the lowest valuation vL for the service. Given price p,

each customer’s surplus is vL − p. Then, for the profit maximizing firm, the

optimal pricing problem is provided as follows:

π∗(λ) = max
p≥0

pλ (B.1)

subject to vL − p ≥ 0,

The optimal strategy under the nondisclosure strategy for customers without

learning opportunities is provided in the following lemma.

Lemma B.1. Given that the firm attracts a population λ of customers with-

out learning opportunities, the optimal price is p∗ = vL and the firm earns a

profit π∗(λ) = vLλ.
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Proof. The result can be obtained by letting vL − p = 0. The rest of the

proof mimics that in Lemma 2.1.

By comparing the profits under disclosure and nondisclosure strategy,

we characterize the optimal disclosure decision for the firm in the following

lemma.

Proposition B.1 (Threshold Policy). Let α̃ = K
(vH−vL)λ

. When customers

have no learning opportunities, the optimal quality disclosure decision for

the firm is a threshold policy: it is optimal for the firm to disclose quality

information if α ≥ α̃; otherwise, the firm should not disclose. The optimal

profit for the firm is πNL = max{π∗D, vLλ}. In addition, if λ is larger, then

the firm is more likely to disclose its quality information.

Proof. It is optimal for the firm to adopt the disclosure strategy, if and only

if π∗D(λ) = [αvH + (1 − α)vL]λ −K ≥ π∗(λ) = vLλ, i.e., α ≥ α̃, where α̃ is

defined as α̃ = K
(vH−vL)λ

; otherwise when α < α̃, we have π∗D(λ) < π∗(λ), and

the firm should adopt the nondisclosure strategy.

This result is consistent with that of Jovanovic [58]. Note that without

customer learning, λ only affects α̃ but not the structure of the optimal

disclosure decision.
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Appendix C

Quality Disclosure with

Congestion

Under the disclosure strategy, the quality information α is known to all

customers. Let pD, µD be the price and capacity level under the disclosure

strategy, respectively. For each customer, her surplus is

αvH + (1− α)vL − pD − hE[W ],

where E[W ] = 1
µD−λ

given the arrival rate λ (λ ≤ λ). Given that the profit

maximizing firm would like to attract customers with demand rate λ, its

optimal decision problem is provided as follows:

π∗D(λ) = max
pD≥0,µD≥0

pDλ− cµD −K (C.1)

subject to αvH + (1− α)vL − pD − h
1

µD − λ
≥ 0,

µD > λ.

Then, given that the firm attract customers with demand rate λ, the optimal

strategy under the disclosure strategy is provided in the following proposition.

Lemma C.1. Suppose the firm attracts customers with demand rate λ, then
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the optimal strategy is as follows:

µ∗D(λ) =λ+

√
hλ

c
, (C.2)

p∗D(λ) =αvH + (1− α)vL −
√
hc

λ
. (C.3)

In addition, the firm earns a profit π∗D(λ) = [αvH +(1−α)vL−c]λ−2
√
hcλ−

K.

Proof. Note that it is optimal to let

αvH + (1− α)vL − pD − hE[W ] = 0,

i.e., to provide zero surplus for customers. Then we have

pD = αvH + (1− α)vL − hE[W ].

Since πD = pDλ− cµD −K, we have

πD = (αvH + (1− α)vL − h
1

µ− λ
)λ− cµD −K.

One can verify that πD is a concave function in µ. Based on the first-order

optimality condition, we can obtain the optimal solution µ∗D(λ) = λ+
√

hλ
c
,

p∗D(λ) = αvH + (1 − α)vL −
√

hc
λ

and π∗D(λ) = [αvH + (1 − α)vL − c]λ −

2
√
hcλ−K.

The optimal solution for (C.1) can be easily obtained by letting αvH +

(1−α)vL− pD−hE[W ] = 0. It is intuitive that as λ increases, then the firm

should charge a higher price and invest in a large capacity. Finally, note that

π∗D(λ) is a convex function of λ.

Next, we provide the optimal decision for the firm under the disclosure

strategy.
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Lemma C.2. Let λ̃D =

(√
hc+
√
hc+K[αvH+(1−α)vL−c]
αvH+(1−α)vL−c

)2

. If λ ≥ λ̃D, the firm

can obtain an optimal profit π∗D = π∗D(λ) by adopting the disclosure strategy;

otherwise if λ < λ̃D, the firm should not enter the market.

Proof. We know that π∗D(λ) = [αvH + (1 − α)vL − c]λ − 2
√
hcλ − K. The

only positive root in term of
√
λ for the equation [αvH + (1 − α)vL − c]λ −

2
√
hcλ−K = 0 is

√
λ =

√
λ̃D, or equivalently, λ = λ̃D, where λ̃D is defined

as

λ̃D =

(√
hc+

√
hc+K[αvH + (1− α)vL − c]
αvH + (1− α)vL − c

)2

.

Note that π∗D is a quadratic function in term of
√
λ. Therefore, π∗D = π∗D(λ) ≥

0 when λ ≥ λ̃D and the firm can make a nonnegative profit by adopting the

disclosure strategy; otherwise when λ < λ̃, π∗D < 0, and the firm should not

enter the market.

Since customers are homogeneous, as long as the total arrival rate λ is

large enough, it is optimal for the firm to enter the market by adopting the

disclosure strategy, and otherwise it is not profitable for the firm to enter the

market.

For analytical simplicity and to obtain managerial insights, we focus on

the S(1) framework (our results still hold qualitatively under the S(N) frame-

work). Specifically, we study the S(1) framework where each arrival in the

Poisson arrival process is assumed to obtain one sample from a previous

arrival who purchased the service from the firm.

Under the S(1) framework, customer i purchases if and only if

αi(1)vH + (1− αi(1))vL ≥ p+ hE[W ],

i.e., she purchases the service if the valuation derived from her sample is no

smaller than the selling price plus the expected waiting cost.
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Then we have the following lemma.

Lemma C.3. Under the nondisclosure strategy, (i) suppose the firm commits

to attract customers who obtained an “H” sample only: if λ ≥ 4ch
α(vH−c)2

, the

optimal strategy is p∗H = vH −
√

hc
αλ
, µ∗H = αλ+

√
αλh
c

with the optimal profit

π∗H = α(vH − c)λ − 2
√
αhcλ; otherwise if λ < 4ch

α(vH−c)2
, the firm should not

enter the market; (ii) suppose the firm commits to attract all customers: if

λ ≥ 4ch
(vL−c)2

, the optimal strategy is p∗L = vL −
√

hc
λ
, µ∗L = λ +

√
λh
c

with the

optimal profit π∗L = (vL − c)λ − 2
√
hcλ; otherwise if λ < 4ch

(vL−c)2
, the firm

should not enter the market.

Proof. (i): The firm adopts the nondisclosure strategy to attract H-type cus-

tomers only. In this case, the proportion of H-type customers is α. Because

only customers who obtained an H sample would purchase this service, given

the total population λ (including customers who obtained an L sample), the

population of customers who actually purchase is αλ, and hence the expected

delay is E[W ] = 1
µ−αλ . Note that under the nondisclosure strategy, customers

do not know the exact value of α. If the firm aims to attract H-type cus-

tomers only, then the surplus for H-type customers must be nonnegative,

and the utility for L-type customers must be negative. Let µH , pH and πH

denote the capacity, price and profit in this case, respectively. Given the

total population λ, then the firm’s profit maximization problem is provided

as follows:

π∗H(λ) = max
pH≥0,µH≥0

αpHλ− cµH

subject to vH − pH − h
1

µH − αλ
≥ 0,

vL − pH − h
1

µH − αλ
< 0,

µH > αλ,
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The optimal solution can be obtained by letting vH−pH−hE[W ] = 0, where

E[W ] = 1
µH−αλ

, and hence pH = vH − h
µH−αλ

. By substituting the preceding

formula in πH = αpHλ− cµH , we obtain πH = (vH − h
µ−αλ)αλ− cµH . Note

that πH is concave in µH . Based on the first-order optimality condition, we

can obtain the optimal solution µ∗H(λ) = αλ+
√

αλh
c

and p∗H(λ) = vH−
√

hc
αλ
.

The firm earns a profit π∗H(λ) = α(vH − c)λ − 2
√
αhcλ under the optimal

solution. Note that π∗H(λ) ≥ 0, if and only if λ ≥ 4ch
α(vH−c)2

. Therefore, the

firm can make nonnegative profits if λ ≥ 4ch
α(vH−c)2

; otherwise the firm should

not enter the market.

(ii): The firm adopts the nondisclosure strategy to attract all customers.

Notice that if the firm is able to attract L-type customers, it is able to

attract H-type customers as well since vH > vL (keep in mind all customers

are subject to the same expected delay). Because all customers are willing

to purchase, then the expected delay is E[W ] = 1
µL−λ

in this case. Let µL, pL

and πL denote the capacity, price and profit in this case, respectively. The

firm’s profit maximization problem is given by

π∗L(λ) = max
pL≥0,µL≥0

pLλ− cµL

subject to vL − pL − h
1

µL − λ
≥ 0,

µL > λ.

The optimal solution can be obtained by letting vL− pL− hE[W ] = 0 where

E[W ] = 1
µL−λ

.Then pL = vL − h
µL−λ

. The rest of the proof is similar to case

(i).

The profit for the optimal nondisclosure strategy can be described as

π∗ND = max{π∗H , π∗L, 0} = max{α(vH − c)λ− 2
√
αhcλ, (vL − c)λ− 2

√
hcλ, 0}.

149



We first focus on the case in which the firm can make nonnegative profits

under nondisclosure strategy by attracting either all customers or H-type

customers only. The following proposition provides the optimal nondisclosure

strategy.

Lemma C.4. When λ ≥ max{ 4hc
(vL−c)2

, 4hc
α(vH−c)2

}, i.e., λ is large enough, there

exists α̃ =

(
2
√
hcλ+

√
4hcλ−4(vH−c)λ(−(vL−c)λ+2

√
hcλ)

2(vH−c)λ

)2

such that it is optimal

to attract customers who obtained an “H” sample only if α > α̃; otherwise it

is optimal to attract all customers.

Proof. When λ is large enough, i.e., λ ≥ max{ 4hc
(vL−c)2

, 4hc
α(vH−c)2

}, we have

π∗H ≥ 0 and π∗L ≥ 0. It is optimal to attract H-type customers only if

π∗H ≥ π∗L. π∗H − π∗L = (vH − c)λα − 2
√
hcλα − (vL − c)λ + 2

√
hcλ. This is

a quadratic function of
√
α. Since (vL − c)λ− 2

√
hcλ > 0, the only positive

root of in term of
√
α for the equality

(vH − c)λα− 2
√
hcλα− (vL − c)λ+ 2

√
hcλ = 0,

is
√
α =

2
√
hcλ+

√
4hcλ− 4(vH − c)λ(−(vL − c)λ+ 2

√
hcλ)

2(vH − c)λ
.

In addition, this root is less than 1, which can be easily seen from (vH −

c)λα− 2
√
hcλα− (vL − c)λ+ 2

√
hcλ > 0 when α = 1.

Intuitively, if the expected quality level is high enough, then it is more

profitable by attracting H-type customers only; otherwise, it is optimal to

attract all customers.

Corollary C.1. The optimal capacity under the nondisclosure strategy is

discontinuous in α. Moreover, it is non-monotonic at α̃.

Proof. This is implied by Lemma C.4. If α < α̃, it is optimal to attract all

customers, and corresponding capacity is µ∗L = λ+
√

λh
c
, which is independent
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of α. Then limα→α̃− = λ+
√

λh
c
. If α > α̃, then it is optimal to attractH-type

customers only, and the corresponding optimal capacity is µ∗H = αλ+
√

αλh
c
.

Then limα→α̃+ = α̃λ +
√

α̃λh
c
. Hence the optimal capacity is discontinuous

at α̃. It is non-monotonic because αλ +
√

αλh
c

is nondecreasing in α and

α̃λ+
√

α̃λh
c
< λ+

√
λh
c
.

Corollary C.1 shows that under the nondisclosure strategy, the capacity

decision should be made cautiously, i.e., a higher service quality not neces-

sarily implies the need for a larger capacity. This is due to the fact that

when quality level is large enough, then the firm is more profitable by only

attracting customers who obtained an “H ” sample.

The following proposition provides the optimal nondisclosure strategy

under the condition λ < max{ 4hc
(vL−c)2

, 4hc
α(vH−c)2

}.

Proposition C.1. Under the condition λ < max{ 4hc
(vL−c)2

, 4hc
α(vH−c)2

}, the opti-

mal nondisclosure strategy can be described as follows: (1) If 4hc
α(vH−c)2

≤ λ <

4hc
(vL−c)2

, the firm should adopt nondisclosure strategy to attract customers who

obtained an “H” sample only. (2) If 4hc
(vL−c)2

≤ λ < 4hc
α(vH−c)2

, the firm should

adopt nondisclosure strategy to attract all customers. (3) Otherwise the firm

should not enter the market.

Proof. If the firm aims to attract all customers, it can make non-negative

profit, if and only if λ ≥ 4hc
(vL−c)2

. If the firm aims to attract H-type cus-

tomers only, it can make non-negative profit, if and only if λ ≥ 4hc
α(vH−c)2

.

If 4hc
(vL−c)2

≤ λ < 4hc
α(vH−c)2

, the firm cannot make non-negative profit by at-

tracting H customers only, but the firm can make non-negative profits by

attracting attracting all customers. Therefore, attracting all customers is

the optimal strategy in this case. Similarly, if 4hc
α(vH−c)2

≤ λ < 4hc
(vL−c)2

, then

the firm cannot make non-negative profit by attracting all customers, but it
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can make non-negative profit by attracting H-type customers only. There-

fore, attracting H-type customers only is the optimal strategy in this case.

If λ < min{ 4hc
(vL−c)2

, 4hc
α(vH−c)2

}, π∗H < 0 and π∗L < 0, and the firm should not

enter the market.
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Appendix D

Single-Stage Inventory Model

Assume that each shipment incurs a fixed setup cost K. We adopt the con-

vention that discrete units of inventories can be approximated by continuous

variables. We will follow that convention throughout. Consequently, the

long-run average cost of the single-stage problem can be approximated as

follows:

C(r,Q) =
λK +

∫ r+Q
r

G(y)dy

Q
. (D.1)

Clearly, the approximation is adequate when Q is sufficiently large. The

objective is to determine the values of r and Q such that minimize C(r,Q).

For any fixedQ, define r(Q) ≡ arg minr C(r,Q). If the optimal solution is not

unique, we choose the largest one; this convention will be used throughout

the section. Also, define C(Q) ≡ C(r(Q), Q), (r∗, Q∗) ≡ arg minr,QC(r,Q)

and C∗ ≡ C(r∗, Q∗). Finally, let H(Q) ≡ G(r(Q)) and A(Q) ≡ QH(Q) −∫ Q
0
H(y)dy.

Lemma D.1 (Zheng 97). Under Assumption 3.3.1, the following results

hold: (i) C(r,Q) is jointly convex in r and Q. (ii) G(r(Q)) = G(r(Q) + Q)

and G(r∗) = G(r∗+Q∗) = C∗. (iii) C(Q)/C∗ ≤ ε(Q/Q∗), where ε(q) = (q+

q−1)/2. (iv) H(Q) is an increasing convex function,
∫ Q

0
H(y)dy ≥ 1

2
QH(Q)

and H(Q∗) = C∗. (v) A(Q) is an increasing function and A(Q∗) = λK.

By Lemma D.1, we further obtain the following properties.
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Lemma D.2. (i) For any y ∈ [r∗, r∗ +Q∗], G(y) ≤ C∗. (ii) λK ≤ 1
2
C∗Q∗.
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